How the COVID19 vaccines were created so quickly Kaitlyn Sadtler and Elizabeth Wayne

In the 20th century, most vaccines took
well over a decade

to research, test, and produce.

But the vaccines for COVID-19 cleared
the threshold for emergency use

in less than 11 months.

The secret behind this speed
is a medical technology

that’s been developing for decades:

the mRNA vaccine.

This new treatment uses our body’s
existing cellular machinery

to trigger an immune response,

protecting us from viruses without
ever experiencing an infection.

And in the future, this approach might
be able to treat new diseases

almost as quickly as they emerge.

So how do these
revolutionary vaccines work?

The key ingredient is in the name.

mRNA, or messenger ribonucleic acid,
is a naturally occurring molecule

that encodes the instructions
for producing proteins.

When our cells process mRNA,
a part of the cell called the ribosome

translates and follows these instructions
to build the encoded protein.

The mRNA in these vaccines works
in exactly the same way,

but scientists use the molecule to safely
introduce our body to a virus.

First, researchers encode trillions
of mRNA molecules with the instructions

for a specific viral protein.

This part of the virus is
harmless by itself,

but helpful for training
our body’s immune response.

Then, they inject those molecules
into a nanoparticle

roughly 1,000 times smaller
than the average cell.

This nanoparticle is made of lipids,

the same type of fatty material that forms
the membrane around our cells.

But these lipids have been
specially engineered

to protect the mRNA on its journey
through the body

and assist its entry into the cell.

Lastly, the final ingredients are added:
sugars and salt

to help keep the nanoparticles intact
until they reach their destination.

Before use, the vaccine is kept at a
temperature of -20 to -80 degrees Celsius

to ensure none of the components
break down.

Once injected, the nanoparticles
disperse and encounter cells.

The lipid coating on each nanoparticle
fuses with the lipid membrane of a cell

and releases the mRNA to do its work.

At this point, we should note
that while the vaccine is delivering

viral genetic material into our cells,

it’s impossible for this material
to alter our DNA.

mRNA is a short-lived molecule

that would need additional enzymes and
chemical signals to even access our DNA,

let alone change it.

And none of these DNA altering components
are present in mRNA vaccines.

Once inside the cell, the ribosome
translates the mRNA’s instructions

and begins assembling the viral protein.

In COVID-19 vaccines, that protein
is one of the spikes typically found

on the virus’s surface.

Without the rest of the virus
this lone spike is not infectious,

but it does trigger our immune response.

Activating the immune system
can be taxing on the body,

resulting in brief fatigue, fever,
and muscle soreness in some people.

But this doesn’t mean
the recipient is sick—

it means the vaccine is working.

The body is producing antibodies to fight
that viral protein,

that will then stick around to defend
against future COVID-19 infections.

And since this particular protein is
likely to be found in most COVID variants,

these antibodies should reduce
the threat of catching new strains.

This approach offers significant
advantages over previous vaccines.

Traditional vaccines contain
weakened versions of live viruses

or amputated sections of a virus,

both of which required time intensive
research to prepare

and unique chemical treatments
to safely inject.

But mRNA vaccines don’t actually
contain any viral particles,

so they don’t have to be built
from scratch to safely adjust each virus.

In fact, every mRNA vaccine could have
roughly the same list of ingredients.

Imagine a reliable, robustly tested
vaccine that can treat any disease

by swapping out a single component.

To treat a new illness, researchers would
identify the right viral protein,

encode it into mRNA,

and then swap that mRNA
into the existing vaccine platform.

This could make it possible to develop
new vaccines in weeks,

giving humanity a flexible new tool
in the never-ending fight against disease.

在 20 世纪,大多数疫苗
需要十多年的时间

来研究、测试和生产。

但 COVID-19 疫苗

在不到 11 个月的时间内清除了紧急使用的门槛。

这种速度背后的秘密

几十年来一直在发展的医疗技术

:mRNA疫苗。

这种新疗法利用我们身体
现有的细胞机制

来触发免疫反应,

保护我们免受病毒
感染,而不会受到感染。

并且在未来,这种方法可能
能够在新疾病出现时

几乎一样快地治疗它们。

那么这些
革命性的疫苗是如何发挥作用的呢?

关键成分在于名称。

mRNA,或信使核糖核酸,
是一种天然存在的分子

,它编码
生产蛋白质的指令。

当我们的细胞处理 mRNA 时,
称为核糖体的细胞部分会

翻译并遵循这些指令
来构建编码的蛋白质。

这些疫苗中的 mRNA 以
完全相同的方式工作,

但科学家们使用该分子
将我们的身体安全地引入病毒。

首先,研究人员根据特定病毒蛋白的指令对数万亿
个 mRNA 分子进行编码

这部分病毒
本身是无害的,

但有助于训练
我们身体的免疫反应。

然后,他们将这些分子
注入到比普通细胞小大约 1000 倍的纳米颗粒中

这种纳米颗粒由脂质制成,脂质

是形成我们细胞周围膜的相同类型的脂肪物质

但这些脂质经过
特殊设计

,可保护 mRNA 在其
穿过身体的过程中

并帮助其进入细胞。

最后,添加最后的成分:
糖和盐,

以帮助保持纳米粒子完好无损,
直到它们到达目的地。

使用前,将疫苗保持在
-20 至 -80 摄氏度的温度下,

以确保没有任何成分
分解。

一旦注入,纳米粒子就会
分散并遇到细胞。

每个纳米颗粒上的脂质涂层
与细胞的脂质膜融合

并释放 mRNA 以完成其工作。

在这一点上,我们应该注意到
,虽然疫苗正在将

病毒遗传物质输送到我们的细胞中,

但这种物质
不可能改变我们的 DNA。

mRNA 是一种短命的分子

,需要额外的酶和
化学信号才能访问我们的 DNA,

更不用说改变它了。

并且这些 DNA 改变成分
都不存在于 mRNA 疫苗中。

一旦进入细胞,核糖体就会
翻译 mRNA 的指令

并开始组装病毒蛋白。

在 COVID-19 疫苗中,这种蛋白质
是病毒表面常见的刺突蛋白之一

如果没有病毒的其余部分,
这个单独的尖峰不会具有传染性,

但它确实会触发我们的免疫反应。

激活免疫系统
可能会对身体造成负担,

导致一些人出现短暂的疲劳、发烧
和肌肉酸痛。

但这并不
意味着接受者生病了——

这意味着疫苗正在发挥作用。

身体正在产生抗体来对抗
这种病毒蛋白,

然后这些抗体会留下来
抵御未来的 COVID-19 感染。

而且由于这种特殊的蛋白质很
可能存在于大多数 COVID 变体中,因此

这些抗体应该可以减少
感染新毒株的威胁。

与以前的疫苗相比,这种方法具有显着优势。

传统疫苗包含
弱化版本的活病毒

或病毒的截断部分,

这两者都需要时间密集的
研究来准备

和独特的化学治疗
来安全注射。

但 mRNA 疫苗实际上并不
包含任何病毒颗粒,

因此它们不必
从头开始构建以安全地调整每种病毒。

事实上,每一种 mRNA 疫苗都可能有
大致相同的成分清单。

想象一下一种可靠的、经过严格测试的
疫苗,它可以

通过更换单一成分来治疗任何疾病。

为了治疗一种新疾病,研究人员将
识别出正确的病毒蛋白,将其

编码为 mRNA,

然后将该 mRNA 交换
到现有的疫苗平台中。

这可以
在数周内开发出新疫苗,

为人类
在永无止境的疾病斗争中提供灵活的新工具。