How do ventilators work Alex Gendler

In the 16th century, Flemish physician
Andreas Vesalius

described how a suffocating animal
could be kept alive

by inserting a tube into its trachea
and blowing air to inflate its lungs.

In 1555, this procedure didn’t warrant
much acclaim.

But today, Vesalius’s treatise
is recognized

as the first description
of mechanical ventilation—

a crucial practice in modern medicine.

To appreciate the value of ventilation,

we need to understand how
the respiratory system works.

We breathe by contracting our diaphragms,
which expands our chest cavities.

This allows air to be drawn in,
inflating the alveoli—

millions of small sacs inside our lungs.

Each of these tiny balloons is surrounded
by a mesh of blood-filled capillaries.

This blood absorbs oxygen
from the inflated alveoli

and leaves behind carbon dioxide.

When the diaphragm is relaxed,

the CO2 is exhaled alongside
a mix of oxygen and other gases.

When our respiratory systems
are working correctly,

this process happens automatically.

But the respiratory system can be
interrupted by a variety of conditions.

Sleep apnea stops diaphragm muscles
from contracting.

Asthma can lead to inflamed airways
which obstruct oxygen.

And pneumonia, often triggered
by bacterial or viral infections,

attacks the alveoli themselves.

Invading pathogens kill lung cells,

triggering an immune response
that can cause lethal inflammation

and fluid buildup.

All these situations render the lungs
unable to function normally.

But mechanical ventilators
take over the process,

getting oxygen into the body
when the respiratory system cannot.

These machines can bypass
constricted airways,

and deliver highly oxygenated air
to help damaged lungs diffuse more oxygen.

There are two main ways
ventilators can work—

pumping air into the patient’s lungs
through positive pressure ventilation,

or allowing air to be passively drawn
in through negative pressure ventilation.

In the late 19th century,

ventilation techniques largely
focused on negative pressure,

which closely approximates
natural breathing

and provides an even distribution
of air in the lungs.

To achieve this, doctors created
a tight seal around the patient’s body,

either by enclosing them in
a wooden box or a specially sealed room.

Air was then pumped
out of the chamber,

decreasing air pressure,
and allowing the patient’s chest cavity

to expand more easily.

In 1928, doctors developed
a portable, metal device

with pumps powered
by an electric motor.

This machine, known as the iron lung,

became a fixture in hospitals
through the mid-20th century.

However, even the most compact
negative pressure designs

heavily restricted a patient’s movement

and obstructed access for caregivers.

This led hospitals in the 1960’s to shift
towards positive pressure ventilation.

For milder cases,
this can be done non-invasively.

Often, a facemask is fitted
over the mouth and nose,

and filled with pressurized air
which moves into the patient’s airway.

But more severe circumstances

require a device that takes over
the entire breathing process.

A tube is inserted
into the patient’s trachea

to pump air directly into the lungs,

with a series of valves
and branching pipes

forming a circuit for inhalation
and exhalation.

In most modern ventilators,

an embedded computer system

allows for monitoring the patient’s
breathing and adjusting the airflow.

These machines aren’t used
as a standard treatment,

but rather, as a last resort.

Enduring this influx of pressurized air
requires heavy sedation,

and repeated ventilation
can cause long-term lung damage.

But in extreme situations,

ventilators can be the difference
between life and death.

And events like the COVID-19 pandemic

have shown that they’re even more
essential than we thought.

Because current models
are bulky, expensive,

and require extensive training to operate,
most hospitals only have a few in supply.

This may be enough
under normal circumstances,

but during emergencies,
this limited cache is stretched thin.

The world urgently needs more low-cost
and portable ventilators,

as well as a faster means
of producing and distributing

this life-saving technology.

在 16 世纪,佛兰芒医生
Andreas Vesalius

描述了如何

通过将一根管子插入气管
并吹气使其肺部膨胀来使窒息的动物保持生命。

在 1555 年,这个程序并没有引起
太多的赞誉。

但是今天,Vesalius 的论文
被公

认为是
对机械通气的首次描述——

这是现代医学中的一项重要实践。

要了解通气的价值,

我们需要
了解呼吸系统的工作原理。

我们通过收缩隔膜来呼吸,
这会扩大我们的胸腔。

这允许空气被吸入,
使肺泡膨胀——

我们肺内的数百万个小囊。

这些小气球中的每一个都被
充满血液的毛细血管网所包围。

这种血液
从膨胀的肺泡中吸收氧气

并留下二氧化碳。

当隔膜放松时

,二氧化碳与
氧气和其他气体的混合物一起呼出。

当我们的
呼吸系统正常工作时,

这个过程会自动发生。

但是呼吸系统可能会
因各种情况而中断。

睡眠呼吸暂停会阻止膈肌
收缩。

哮喘可
导致阻塞氧气的气道发炎。

而通常
由细菌或病毒感染引发的肺炎会

攻击肺泡本身。

入侵的病原体会杀死肺细胞,

引发免疫反应
,从而导致致命的炎症

和积液。

所有这些情况都会导致肺部
无法正常运作。

但是机械呼吸机
接管了这个过程,当呼吸系统不能时,

将氧气吸入体内

这些机器可以绕过
狭窄的气道,

并输送高氧空气
以帮助受损的肺部扩散更多的氧气。

呼吸机的工作方式主要有两种——通过正压通气

将空气泵入患者肺部

或通过负压通气被动吸入空气

在 19 世纪后期,

通气技术主要
集中在负压上,

它非常接近
自然呼吸,


在肺部提供均匀的空气分布。

为了实现这一点,医生在
病人的身体周围创造了一个紧密的密封,

要么将它们封闭在
一个木箱或一个特别密封的房间里。

然后将空气泵
出腔室,

降低气压
,让患者的胸腔

更容易扩张。

1928 年,医生开发
了一种便携式金属设备

,其泵
由电动机驱动。

这台机器,被称为铁肺,

在 20 世纪中叶成为医院的固定装置

然而,即使是最紧凑的
负压设计也

严重限制了患者的活动

并阻碍了护理人员的进入。

这导致 1960 年代的医院
转向正压通气。

对于较轻的病例,
这可以无创地完成。

通常,面罩会戴
在嘴巴和鼻子上,

并充满加压空气
,这些空气会进入患者的气道。

但更严重的情况

需要一个设备来
接管整个呼吸过程。

将一根管子
插入患者的气管

,将空气直接泵入肺部

,一系列阀门
和分支管

形成吸气
和呼气回路。

在大多数现代呼吸机中,

嵌入式计算机系统

允许监测患者的
呼吸并调节气流。

这些机器不用
作标准治疗,

而是作为最后的手段。

承受这种压缩空气的流入
需要大量镇静剂

,反复
通气会导致长期肺损伤。

但在极端情况下,

呼吸机可能决定
生死。

像 COVID-19 大流行这样的事件

表明,它们
比我们想象的更重要。

由于目前的模型
体积庞大、价格昂贵,

并且需要大量培训才能操作,因此
大多数医院只有少量供应。


在正常情况下可能就足够了,

但是在紧急情况下,
这个有限的缓存就会变得很薄。

世界迫切需要更多低成本
和便携式呼吸机,

以及更快
的生产和分发

这种拯救生命的技术的手段。