Can seaweed help curb global warming Tim Flannery

Oh, there’s a lot of it.

This is seaweed.

It’s pretty humble stuff.

But it does have
some remarkable qualities.

For one, it grows really fast.

So the carbon that is part
of that seaweed,

just a few weeks ago,

was floating in the atmosphere
as atmospheric CO2,

driving all the adverse consequences
of climate change.

For the moment, it’s locked
safely away in the seaweed,

but when that seaweed rots –

and by the smell of it,
it’s not far away –

when it rots, that CO2 will be released
back to the atmosphere.

Wouldn’t it be fantastic
if we could find a way

of keeping that CO2 locked up long-term,

and thereby significantly contributing
to solving the climate problem?

What I’m talking about here is drawdown.

It’s now become the other half
of the climate challenge.

And that’s because
we have delayed so long,

in terms of addressing climate change,

that we now have to do two very big
and very difficult things at once.

We have to cut our emissions
and clean our energy supply

at the same time that we draw
significant volumes

of carbon dioxide out of the atmosphere.

If we don’t do that, about 25 percent
of the CO2 we put in the air

will remain there,
by human standards, forever.

So we have to act.

This is really a new phase
in addressing the climate crisis

and it demands new thinking.

So, ideas like carbon offsets
really don’t make sense

in the modern era.

You know, when you offset something,

you say, “I’ll permit myself to put
some greenhouse gas into the atmosphere,

but then I’ll offset it
by drawing it down.”

When you’ve got to both cut your emissions

and draw down CO2,

that thinking doesn’t make sense anymore.

And when we’re talking about drawdown,

we’re talking about putting large volumes
of greenhouses gases, particularly CO2,

out of circulation.

And to do that, we need a carbon price.

We need a significant price
that we’ll pay for that service

that we’ll all benefit from.

We’ve made almost no progress so far

with the second half
of the climate challenge.

It’s not on most people’s radar.

And, you know, I must say,
at times, I hear people saying,

“I’ve lost hope that we can do anything
about the climate crisis.”

And look, I’ve had my sleepless
nights too, I can tell you.

But I’m here today as an ambassador
for this humble weed, seaweed.

I think it has the potential

to be a big part of addressing
the challenge of climate change

and a big part of our future.

Now, what the scientists are telling us
we need to do over the next 80-odd years

to the end of this century,

is to cut our greenhouse gas emissions

by three percent every year,

and draw three gigatons of CO2
out of the atmosphere every year.

Those numbers are so large
that they baffle us.

But that’s what the scientists
tell us we need to do.

I really hate showing this graph,

but I’m sorry, I have to do it.

It is very eloquent
in terms of telling the story

of my personal failure

in terms of all the advocacy I’ve done
in climate change work

and in fact, our collective failure
to address climate change.

You can see our trajectory there

in terms of warming
and greenhouse gas concentrations.

You can see all of the great
scientific announcements that we’ve made,

saying how much danger
we face with climate change.

You can see the political meetings.

None of it has changed the trajectory.

And this is why we need new thinking,

we need a new approach.

So how might we go about drawing down
greenhouse gases at a large scale?

There’s really only two ways of doing it,

and I’ve done a very deep dive
into drawdown.

And I’ll preempt my –

And I would say this stuff comes up
smelling like roses at the end of the day.

It does, it’s one of the best options,

but there are many, many possibilities.

There are chemical pathways
and biological pathways.

So two ways, really,
of getting the job done.

The biological pathways are fantastic

because the energy source
that’s needed to drive them, the sun,

is effectively free.

We use the sun to drive
photosynthesis in plants,

break apart that CO2
and capture the carbon.

There are also chemical pathways.

They sound ominous, but actually,
they’re not bad at all.

The difficulty they face is
that we have to actually pay

for the energy
that’s required to do the job

or pay to facilitate that energy.

Direct air capture is a great example
of a chemical pathway,

and people are using that right now
to take CO2 out of the atmosphere

and manufacture biofuels
or manufacture plastics.

Great progress is being made,

but it will be many decades

before those chemical pathways
are drawing down a gigaton of CO2 a year.

The biological pathways offer us
a lot more hope, I think,

in the short term.

You’ve probably heard
about reforestation, planting trees,

as a solution to the climate problem.

You know, it’s a fair question:

Can we plant our way out
of this problem by using trees?

I’m skeptical about that
for a number of reasons.

One is just the scale of the problem.

All trees start as seeds,
little tiny things,

and it’s many decades
before they’ve reached

their full carbon-capture potential.

And secondly,

if you look at the land surface,
you see that it’s so heavily utilized.

We get our food from it,
we get our forestry products from it,

biodiversity protection
and water and everything else.

To expect that we’ll find enough space
to deal with this problem,

I think is going to be quite problematic.

But if we look offshore,

wee see a solution where there’s already
an existing industry,

and where there’s a clearer way forward.

The oceans cover
about 70 percent of our planet.

They play a really big role
in regulating our climate,

and if we can enhance
the growth of seaweed in them,

we can use them, I think,
to develop a climate-altering crop.

There are so many
different kinds of seaweed,

there’s unbelievable
genetic diversity in seaweed,

and they’re very ancient;

they were some of the first
multicellular organisms ever to evolve.

People are using special
kinds of seaweed now

for particular purposes,

like developing very high-quality
pharmaceutical products.

But you can also use seaweed
to take a seaweed bath,

it’s supposed to be good for your skin;

I can’t testify to that,
but you can do it.

The scalability is the big thing
about seaweed farming.

You know, if we could cover
nine percent of the world’s ocean

in seaweed farms,

we could draw down the equivalent
of all of the greenhouse gases

we put up in any one year,

more than 50 gigatons.

Now, I thought that was fantastic
when I first read it,

but I thought I’d better calculate how big
nine percent of the world’s oceans is.

It turns out, it’s about
four and a half Australias,

the place I live in.

And how close are we
to that at the moment?

How many ocean-going seaweed farms
do we actually have out there?

Zero.

But we do have some prototypes,
and therein lies some hope.

This little drawing here of a seaweed farm
that’s currently under construction

tells you some very interesting
things about seaweed.

You can see the seaweed
growing on that rack,

25 meters down in the ocean there.

It’s really different
from anything you see on land.

And the reason being that, you know,
seaweed is not like trees,

it doesn’t have nonproductive parts

like roots and trunks
and branches and bark.

The whole of the plant
is pretty much photosynthetic,

so it grows fast.

Seaweed can grow a meter a day.

And how do we sequester the carbon?

Again, it’s very different from on land.

All you need to do
is cut that seaweed off –

drifts into the ocean abyss,

Once it’s down a kilometer,

the carbon in that seaweed is effectively
out of the atmospheric system

for centuries or millennia.

Whereas if you plant a forest,

you’ve got to worry
about forest fires, bugs, etc.,

releasing that carbon.

The key to this farm, though,

is that little pipe
going down into the depths.

You know, the mid-ocean is basically
a vast biological desert.

There’s no nutrients there
that were used up long ago.

But just 500 meters down,

there is cool, very nutrient-rich water.

And with just a little bit
of clean, renewable energy,

you can pump that water up

and use the nutrients in it
to irrigate your seaweed crop.

So I think this really has
so many benefits.

It’s changing a biological desert,

the mid-ocean,

into a productive, maybe even
planet-saving solution.

So what could go wrong?

Well, anything we’re talking
about at this scale

involves a planetary-scale intervention.

And we have to be very careful.

I think that piles of stinking seaweed

are probably going to be
the least of our problems.

There’s other unforeseen things
that will happen.

One of the things that really worries me,
when I talk about this,

is the fate of biodiversity
in the deep ocean.

If we are putting gigatons of seaweed
into the deep ocean,

we’re affecting life down there.

The good news is that we know

that a lot of seaweed
already reaches the deep ocean,

after storms or through submarine canyons.

So we’re not talking
about a novel process here;

we are talking about
enhancing a natural process.

And we’ll learn as we go.

I mean, it may be that these ocean-going
seaweed farms will need to be mobile,

to distribute the seaweed
across vast areas of the ocean,

rather than creating
a big stinking pile in one place.

It may be that we’ll need
to char the seaweed –

so create a sort of an inert,
mineral biochar

before we dispatch it into the deep.

We won’t know until we start the process,

and we will learn effectively by doing.

I just want to take you
to contemporary seaweed farming.

It’s a big business –

it’s a six-billion-dollar-a-year business.

These seaweed farms off South Korea –

you can see them from space,
they are huge.

And they’re increasingly
not just seaweed farms.

What people are doing in places like this
is something called ocean permaculture.

And in ocean permaculture,

you grow fish, shellfish
and seaweed all together.

And the reason it works so well

is that the seaweed
makes the seawater less acid.

It provides an ideal environment
for growing marine protein.

If we covered nine percent
of the world’s oceans

in ocean permaculture,

we would be producing enough protein
in the form of fish and shellfish

to give every person
in a population of 10 billion

200 kilograms of high-quality
protein per year.

So, we’ve got a multipotent solution here.

We can address climate change,
we can feed the world,

we can deacidify the oceans.

The economics of all of this
is going to be challenging.

We’ll be investing many,
many billions of dollars

into these solutions,

and they will take decades
to get to the gigaton scale.

The reason that I’m convinced
that this is going to happen

is that unless we get the gas
out of the air,

it is going to keep driving
adverse consequences.

It will flood our cities,

it will deprive us of food,

it will cause all sorts of civil unrest.

So anyone who’s got a solution
to dealing with this problem

has a valuable asset.

And already, as I’ve explained,

ocean permaculture is well on the road
to being economically sustainable.

You know, in the next 30 years,

we have to go from being
a carbon-emitting economy

to a carbon-absorbing economy.

And that doesn’t seem like very long.

But half of the greenhouse gases
that we’ve put into the atmosphere,

we’ve put there in the last 30 years.

My argument is,

if we can put the gas in in 30 years,

we can pull it out in 30 years.

And if you doubt how much
can be done over 30 years,

just cast your mind back
a century, to 1919,

compare it with 1950.

Now, in 1919, here in Edinburgh,

you might have seen
a canvas and wood biplane.

Thirty years later,
you’d be seeing jet aircraft.

Transport in the street
were horses in 1919.

By 1950, they’re motor vehicles.

1919, we had gun powder;

1950, we had nuclear power.

We can do a lot in a short period of time.

But it all depends upon us believing
that we can find a solution.

Now what I would love to do
is bring together all of the people

with knowledge in this space.

The engineers who know
how to build structures offshore,

the seaweed farmers, the financiers,

the government regulators,

the people who understand
how things are done.

And chart a way forward,

say: How do we go from the existing
six-billion-dollar-a-year,

inshore seaweed industry,

to this new form of industry,
which has got so much potential,

but will require large
amounts of investment?

I’m not a betting man, you know.

But if I were,

I’ll tell you, my money
would be on that stuff,

it would be on seaweed.

It’s my hero.

Thank you.

(Applause)

哦,有很多。

这是海藻。

这是很不起眼的东西。

但它确实有
一些非凡的品质。

一方面,它增长得非常快。

因此

就在几周前,海藻

中的碳
以大气二氧化碳的形式漂浮在大气中,

推动
了气候变化的所有不利后果。

目前,它被
安全地锁在海藻中,

但是当海藻腐烂时

——根据它的气味,它
离它不远——

当它腐烂时,二氧化碳将被释放
回大气中。

如果我们能找到一种方法

来长期锁定二氧化碳

,从而
为解决气候问题做出重大贡献,那不是很棒吗?

我在这里说的是缩编。

它现在已成为气候挑战的另一半

那是因为
我们在应对气候变化方面拖延了很长时间,

以至于我们现在必须同时做两件非常大
而且非常困难的事情。

我们必须

从大气中吸收大量二氧化碳的同时减少排放并清洁能源供应。

如果我们不这样做,
按照人类标准,我们排放到空气中的大约 25% 的二氧化碳

将永远存在

所以我们必须采取行动。

这确实是应对气候危机的新阶段

,需要新思维。

所以,像碳补偿这样的想法在现代
真的没有意义

你知道,当你抵消一些东西时,

你会说,“我会允许自己将
一些温室气体排放到大气中

,然后我会通过将其
抽出来抵消它。”

当您既要减少排放

量又要减少二氧化碳排放量时,

这种想法就不再有意义了。

当我们谈论缩编时,

我们谈论的是使大量
的温室气体,尤其是二氧化碳,

停止流通。

为此,我们需要一个碳价格。

我们需要为

我们都将从中受益的服务付出高昂的代价。

到目前为止,我们

在应对气候挑战的下半年几乎没有取得任何进展。

它不在大多数人的雷达上。

而且,你知道,我必须说
,有时,我听到人们说,

“我已经失去了我们可以
为气候危机做任何事情的希望。”

看,我也有
过不眠之夜,我可以告诉你。

但我今天在这里
作为这种不起眼的杂草海藻的大使。

我认为它有

可能成为
应对气候变化挑战

的重要组成部分,也是我们未来的重要组成部分。

现在,科学家们告诉我们

,在本世纪末之前的 80 多年里,我们需要做的

是,每年将温室气体排放量

减少 3%,

每年从大气中排放 3 亿吨二氧化碳
。 年。

这些数字如此之大
,以至于让我们感到困惑。

但这就是科学家
告诉我们我们需要做的。

我真的很讨厌显示这个图表,

但很抱歉,我必须这样做。

就我
在气候变化工作中所做的所有倡导以及实际上我们在应对气候变化方面

的集体失败而言,它非常雄辩地讲述了我个人失败的故事

你可以看到我们

在变暖
和温室气体浓度方面的轨迹。

你可以
看到我们所做的所有伟大的科学公告,说明我们在

气候变化方面面临的危险有多大。

你可以看到政治会议。

这些都没有改变轨迹。

这就是为什么我们需要新思维,

我们需要新方法。

那么我们如何才能
大规模地减少温室气体呢?

实际上只有两种方法可以做到这一点,

而且我已经深入研究
了回撤。

而且我会抢占我的 -

我会说这些东西
在一天结束时闻起来像玫瑰。

确实,这是最好的选择之一,

但有很多很多的可能性。

有化学途径
和生物途径。

因此,实际上,有两种方法
可以完成工作。

生物途径非常棒,

因为
驱动它们所需的能源,太阳

,实际上是免费的。

我们利用太阳来驱动
植物的光合作用,

分解二氧化碳
并捕获碳。

还有化学途径。

它们听起来不祥,但实际上,
它们一点也不坏。

他们面临的困难
是我们必须实际

支付完成工作所需的能量

或支付促进这种能量的费用。

直接空气捕获是化学途径的一个很好的例子

,人们现在正在使用它
来从大气中

去除二氧化碳并制造生物燃料
或制造塑料。

正在取得巨大进展,

这些化学途径
每年要消耗 10 亿吨二氧化碳还需要几十年的时间。

我认为,生物途径在短期内为我们提供
了更多希望

您可能听说
过重新造林、植树

以解决气候问题。

你知道,这是一个公平的问题:

我们可以
通过使用树木来解决这个问题吗? 出于多种原因

,我对此持怀疑态度

一是问题的规模。

所有的树木都是从种子开始的,
很小的东西

,几
十年后

它们才能完全发挥其碳捕获潜力。

其次,

如果您查看地表,
您会发现它被大量利用。

我们从中获得食物,
我们从中获得林业产品,

生物多样性保护
和水以及其他一切。

期望我们会找到足够的空间
来处理这个问题,

我认为这将是一个很大的问题。

但是,如果我们向海外看,

我们会看到已经存在行业的解决方案

并且有更清晰的前进方向。

海洋覆盖
了地球约 70% 的面积。

它们在调节我们的气候方面发挥着非常重要的作用

,如果我们能够
促进海藻在其中的生长

,我认为我们可以利用它们
来开发改变气候的作物。

海藻种类繁多,海藻的

遗传多样性令人难以置信,

而且它们非常古老;

它们是最早
进化的多细胞生物之一。

人们现在将特殊
种类的海藻

用于特定目的,

例如开发非常高质量的
药品。

但是你也可以用海藻
来泡海藻浴,

应该对你的皮肤有好处;

我无法证明这一点,
但你可以做到。

可扩展性是
海藻养殖的大事。

你知道,如果我们能够在海藻养殖场覆盖
全球 9% 的海洋

我们就可以排放相当于

我们在任何一年中排放的所有温室气体,

超过 50 吉吨。

现在,
当我第一次读到它时,我觉得这太棒了,

但我想我最好计算一下
世界上 9% 的海洋有多大。

事实证明,我住的地方大约有
四个半澳大利亚

。现在我们离那个地方有多近
? 我们实际上有

多少远洋海藻养殖场

零。

但我们确实有一些原型
,其中蕴藏着一些希望。

这张正在建设中的海藻农场的小图

告诉你一些
关于海藻的非常有趣的事情。

你可以看到
那个架子上生长的海藻,

在海底 25 米处。


与你在陆地上看到的任何东西都不同。

原因是,你知道,
海藻不像树木,

它没有

根、树干
、树枝和树皮等非生产性部分。

整个
植物几乎都是光合作用的,

所以它生长得很快。

海藻一天能长一米。

我们如何隔离碳?

再次,它与陆地上非常不同。

你需要做的
就是砍掉那些海藻——

漂流到海洋的深渊,

一旦它下降一公里

,海藻中的碳就会有效地
脱离大气系统

几个世纪或几千年。

然而,如果你种植森林,

你必须
担心森林火灾、虫子等会

释放碳。

然而,这个农场的关键


那条通向深处的小管道。

要知道,大洋中部基本上
是一片广阔的生物沙漠。

那里
没有很久以前用完的营养物质。

但仅在 500 米下方,

就有凉爽、营养丰富的水。

只需一
点点清洁的可再生能源,

您就可以将水抽出

并利用其中的养分
来灌溉您的海藻作物。

所以我认为这真的
有很多好处。

它正在将生物沙漠

、海洋中部

转变为富有成效的、甚至可以
拯救地球的解决方案。

那么会出现什么问题呢?

好吧,我们在这个规模上谈论的任何事情都

涉及到行星规模的干预。

我们必须非常小心。

我认为成堆的臭

海藻可能
是我们最不关心的问题。

还有其他无法预料的
事情会发生。 当我谈到这一点时

,真正让我担心的一件事

是深海生物多样性的命运

如果我们将数十亿吨的海藻
放入深海,

我们就会影响那里的生命。

好消息是,我们知道

在风暴过后或通过海底峡谷,许多海藻已经到达深海。

所以我们在这里不是在
谈论一个新的过程。

我们正在谈论
增强自然过程。

我们会边走边学。

我的意思是,这些远洋
海藻养殖场可能需要移动,

以便将海藻
分布在广阔的海洋区域,

而不是
在一个地方制造一大堆臭气熏天的海藻。

可能我们需要
将海藻炭化——

所以

在我们将其送入深海之前,先制造一种惰性的矿物生物炭。

在我们开始这个过程之前,我们不会知道,

我们将通过实践来有效地学习。

我只想带你
了解当代海藻养殖。

这是一项大

生意——年收入达 60 亿美元。

韩国附近的这些海藻养殖场——

你可以从太空中看到它们,
它们很大。

他们越来越
不仅仅是海藻农场。

人们在这样的地方所做的
就是所谓的海洋永续农业。

在海洋永续养殖中,

您可以一起种植鱼类、贝类
和海藻。

它之所以如此有效,

是因为海藻
使海水的酸度降低。

它为海洋蛋白质的生长提供了理想的环境

如果我们

在海洋永续养殖中覆盖了世界 9% 的海洋,

我们将以
鱼类和贝类的形式生产足够的蛋白质,

每年可以
为 100 亿人口中的每个人提供

200 公斤的优质
蛋白质。

所以,我们这里有一个多能的解决方案。

我们可以应对气候变化,
我们可以养活世界,

我们可以使海洋脱酸。

所有这一切的经济性
都将具有挑战性。

我们将在这些解决方案上投资
数十亿美元

,它们将需要数十年
才能达到千兆级。


确信这会发生的原因

是,除非我们将气体
从空气中排出,否则

它将继续
造成不利后果。

它会淹没我们的城市,

它会剥夺我们的食物,

它会引起各种各样的内乱。

因此,任何
能够解决这个问题的人

都拥有宝贵的资产。

正如我已经解释的那样,

海洋永续农业已经
在经济上可持续发展。

你知道,在接下来的30年里,

我们必须从
一个碳排放经济体转变

为一个碳吸收经济体。

这似乎并不长。

但是我们排放到大气中的温室气体中有一半是

在过去 30 年中排放的。

我的论点是,

如果我们可以在 30 年内投入天然气,

我们可以在 30 年内将其抽出。

如果你怀疑
30 年内能做多少,

只要把你的思绪回溯
到 1919 年,

把它与 1950 年进行比较。

现在,在 1919 年,在爱丁堡,

你可能已经看到
了帆布和木质双翼飞机。

三十年后,
你会看到喷气式飞机。

1919 年,街道上的交通工具是马。

到 1950 年,它们是机动车辆。

1919年,我们有了火药;

1950 年,我们有了核能。

我们可以在短时间内做很多事情。

但这一切都取决于我们是否
相信我们可以找到解决方案。

现在我想做的
是将这个领域所有有知识的人聚集在一起

知道
如何在海上建造结构的工程师

、海藻养殖者、金融家

、政府监管机构,

以及
了解事情是如何完成的人。

并规划一条前进的道路,

例如:我们如何从现有
的每年 60 亿美元的

近海海藻产业发展


这种具有巨大潜力

但需要
大量投资的新型产业 ?

我不是赌徒,你知道的。

但如果我是,

我会告诉你,我的钱
会花在那些东西上

,会花在海藻上。

是我的英雄。

谢谢你。

(掌声)