How fast can a vaccine be made Dan Kwartler

When a new pathogen emerges,

our bodies and healthcare systems
are left vulnerable.

In times like these,
there’s an urgent need for a vaccine

to create widespread immunity
with minimal loss of life.

So how quickly can we develop vaccines
when we need them most?

Vaccine development can generally
be split into three phases.

In exploratory research, scientists
experiment with different approaches

to find safe and replicable
vaccine designs.

Once these are vetted in the lab,
they enter clinical testing,

where vaccines are evaluated
for safety, efficacy, and side effects

across a variety of populations.

Finally, there’s manufacturing,

where vaccines are produced
and distributed for public use.

Under regular circumstances, this process
takes an average of 15 to 20 years.

But during a pandemic,
researchers employ numerous strategies

to move through each stage
as quickly as possible.

Exploratory research is perhaps
the most flexible.

The goal of this stage
is to find a safe way

to introduce our immune system
to the virus or bacteria.

This gives our body the information
it needs to create antibodies

capable of fighting a real infection.

There are many ways to safely trigger
this immune response,

but generally, the most effective
designs are also the slowest to produce.

Traditional attenuated vaccines
create long lasting resilience.

But they rely on weakened viral strains

that must be cultivated in non-human
tissue over long periods of time.

Inactivated vaccines take
a much faster approach,

directly applying heat, acid, or radiation
to weaken the pathogen.

Sub-unit vaccines, that inject
harmless fragments of viral proteins,

can also be created quickly.

But these faster techniques produce
less robust resilience.

These are just three
of many vaccine designs,

each with their own pros and cons.

No single approach is guaranteed to work,

and all of them require
time-consuming research.

So the best way to speed things up
is for many labs

to work on different models
simultaneously.

This race-to-the-finish strategy

produced the first testable
Zika vaccine in 7 months,

and the first testable COVID-19 vaccine
in just 42 days.

Being testable doesn’t mean
these vaccines will be successful.

But models that are deemed safe
and easily replicable

can move into clinical testing while other
labs continue exploring alternatives.

Whether a testable vaccine is produced
in four months or four years,

the next stage is often the longest and
most unpredictable stage of development.

Clinical testing consists of three phases,
each containing multiple trials.

Phase I trials focus on the intensity
of the triggered immune response,

and try to establish that the vaccine
is safe and effective.

Phase II trials focus on determining
the right dosage and delivery schedule

across a wider population.

And Phase III trials determine safety

across the vaccine’s primary
use population,

while also identifying rare side effects
and negative reactions.

Given the number of variables
and the focus on long-term safety,

it’s incredibly difficult to speed up
clinical testing.

In extreme circumstances,
researchers run multiple trials

within one phase at the same time.

But they still need to meet
strict safety criteria before moving on.

Occasionally, labs can expedite
this process by leveraging

previously approved treatments.

In 2009, researchers adapted
the seasonal flu vaccine to treat H1N1—

producing a widely available vaccine
in just six months.

However, this technique only works
when dealing with familiar pathogens

that have well-established
vaccine designs.

After a successful Phase III trial,
a national regulatory authority

reviews the results and approves
safe vaccines for manufacturing.

Every vaccine has a unique blend
of biological and chemical components

that require a specialized pipeline
to produce.

To start production as soon
as the vaccine is approved,

manufacturing plans must be designed
in parallel to research and testing.

This requires constant coordination
between labs and manufacturers,

as well as the resources to adapt
to sudden changes in vaccine design—

even if that means scrapping
months of work.

Over time, advances in exploratory
research and manufacturing

should make this process faster.

Preliminary studies suggest
that future researchers

may be able to swap genetic material
from different viruses

into the same vaccine design.

These DNA and mRNA based vaccines
could dramatically expedite

all three stages of vaccine production.

But until such breakthroughs arrive,

our best strategy is for labs
around the world to cooperate

and work in parallel
on different approaches.

By sharing knowledge and resources,

scientists can divide and conquer
any pathogen.

当一种新的病原体出现时,

我们的身体和医疗保健
系统就会变得脆弱。

在这样的时代,
迫切需要一种疫苗

来产生广泛的免疫力
,同时最大限度地减少生命损失。

那么,当我们最需要疫苗时,我们能以多快的速度开发疫苗
呢?

疫苗开发通常
可以分为三个阶段。

在探索性研究中,科学家们
尝试不同的方法

来寻找安全且可复制的
疫苗设计。

一旦这些在实验室经过审查,
它们就会进入临床测试,

在该测试中评估疫苗在各种人群中
的安全性、有效性和副作用

最后是制造业

,生产
和分发疫苗供公众使用。

在正常情况下,这个
过程平均需要 15 到 20 年。

但是在大流行期间,
研究人员会采用多种策略

来尽快完成每个阶段

探索性研究可能
是最灵活的。

这个阶段的目标
是找到一种安全的

方法将我们的免疫系统
引入病毒或细菌。

这为我们的身体提供
了制造

能够抵抗真正感染的抗体所需的信息。

有很多方法可以安全地触发
这种免疫反应,

但一般来说,最有效的
设计也是生产速度最慢的。

传统的减毒疫苗可
产生持久的复原力。

但它们依赖于

必须在非人体
组织中长期培养的弱化病毒株。

灭活疫苗
采用更快的方法,

直接加热、酸或辐射
来削弱病原体。

注射
无害病毒蛋白片段的亚单位疫苗

也可以快速制造。

但是这些更快的技术产生的
弹性较差。

这些只是
众多疫苗设计中的三种,

每种都有自己的优缺点。

没有一种方法可以保证有效

,所有这些方法都需要
耗时的研究。

因此,加快速度的最佳方法
是让许多实验室

同时处理不同的模型

这种从头到尾的策略在 7 个月内

生产了第一个可测试的
寨卡疫苗,

并在短短 42 天内生产了第一个可测试的 COVID-19 疫苗

可测试并不意味着
这些疫苗会成功。

但在其他实验室继续探索替代方案时,被认为安全
且易于复制的模型

可以进入临床测试

无论是在四个月还是四年内生产出可测试的疫苗

,下一阶段往往是最长、
最不可预测的发展阶段。

临床测试由三个阶段组成,
每个阶段包含多个试验。

I 期试验侧重于
触发的免疫反应的强度,

并试图确定疫苗
是安全有效的。

II 期试验的重点是在更广泛的人群中
确定正确的剂量和给药时间表

III 期试验确定

了疫苗主要
使用人群的安全性,

同时还确定了罕见的副作用
和负面反应。

考虑到变量的数量
和对长期安全性的关注

,加快
临床测试非常困难。

在极端情况下,
研究人员会

同时在一个阶段内进行多项试验。

但他们仍然需要满足
严格的安全标准才能继续前进。

有时,实验室可以
通过利用

先前批准的治疗方法来加快这一过程。

2009 年,研究人员
采用季节性流感疫苗来治疗 H1N1,在短短六个月内

生产出一种广泛可用的疫苗

然而,这种技术仅
在处理

具有完善
疫苗设计的熟悉病原体时才有效。

在成功进行 III 期试验后
,国家监管机构

审查结果并
批准生产安全疫苗。

每种疫苗都有独特
的生物和化学成分混合物

,需要专门的管道
来生产。

为了
在疫苗获得批准后立即开始生产,

必须
在研究和测试的同时设计生产计划。

这需要
实验室和制造商之间的持续协调,

以及
适应疫苗设计突然变化的资源——

即使这意味着取消
数月的工作。

随着时间的推移,探索性
研究和制造的进步

应该会使这个过程更快。

初步研究表明
,未来的研究人员

可能能够将
来自不同病毒的遗传物质交换

到相同的疫苗设计中。

这些基于 DNA 和 mRNA 的疫苗
可以显着加快

疫苗生产的所有三个阶段。

但在这些突破出现之前,

我们最好的策略是让
世界各地的实验室合作


在不同的方法上并行工作。

通过共享知识和资源,

科学家可以分而治之,征服
任何病原体。