How quantum mechanics explains global warming Lieven Scheire

You’ve probably heard that

carbon dioxide is warming the Earth,

but how does it work?

Is it like the glass of a greenhouse

or like an insulating blanket?

Well, not entirely.

The answer involves a bit

of quantum mechanics, but don’t worry,

we’ll start with a rainbow.

If you look closely at sunlight separated

through a prism,

you’ll see dark gaps where bands of color went missing.

Where did they go?

Before reaching our eyes,

different gases absorbed those

specific parts of the spectrum.

For example, oxygen gas snatched up

some of the dark red light,

and sodium grabbed two bands of yellow.

But why do these gases absorb

specific colors of light?

This is where we enter the quantum realm.

Every atom and molecule has a set number

of possible energy levels for its electrons.

To shift its electrons from the ground state

to a higher level,

a molecule needs to gain a certain amount of energy.

No more, no less.

It gets that energy from light,

which comes in more energy levels than you could count.

Light consists of tiny particles called photons

and the amount of energy in each photon

corresponds to its color.

Red light has lower energy and longer wavelengths.

Purple light has higher energy and shorter wavelengths.

Sunlight offers all the photons of the rainbow,

so a gas molecule can choose

the photons that carry the exact amount of energy

needed to shift the molecule to

its next energy level.

When this match is made,

the photon disappers as the molecule

gains its energy,

and we get a small gap in our rainbow.

If a photon carries too much or too little energy,

the molecule has no choice but

to let it fly past.

This is why glass is transparent.

The atoms in glass do not pair well

with any of the energy levels in visible light,

so the photons pass through.

So, which photons does carbon dioxide prefer?

Where is the black line in our rainbow

that explains global warming?

Well, it’s not there.

Carbon dioxide doesn’t absorb light directly

from the Sun.

It absorbs light from a totally

different celestial body.

One that doesn’t appear to be emitting light at all:

Earth.

If you’re wondering why our planet

doesn’t seem to be glowing,

it’s because the Earth doesn’t emit visible light.

It emits infared light.

The light that our eyes can see,

including all of the colors of the rainbow,

is just a small part of the larger spectrum

of electromagnetic radiation,

which includes radio waves, microwaves,

infrared, ultraviolet, x-rays,

and gamma rays.

It may seem strange to think of these things as light,

but there is no fundamental difference

between visible light and other electromagnetic radiation.

It’s the same energy,

but at a higher or lower level.

In fact, it’s a bit presumptuous to define

the term visible light by our own limitations.

After all, infrared light is visible to snakes,

and ultraviolet light is visible to birds.

If our eyes were adapted to see light of

1900 megahertz, then a mobile phone

would be a flashlight,

and a cell phone tower

would look like a huge lantern.

Earth emits infrared radiation

because every object with a temperature

above absolute zero will emit light.

This is called thermal radiation.

The hotter an object gets,

the higher frequency the light it emits.

When you heat a piece of iron,

it will emit more and more frequencies of infrared light,

and then, at a temperature of around 450 degrees Celsius,

its light will reach the visible spectrum.

At first, it will look red hot.

And with even more heat,

it will glow white

with all of the frequencies of visible light.

This is how traditional light bulbs

were designed to work

and why they’re so wasteful.

95% of the light they emit is invisible to our eyes.

It’s wasted as heat.

Earth’s infrared radiation would escape to space

if there weren’t greenhouse gas molecules

in our atmophere.

Just as oxygen gas prefers the dark red photons,

carbon dioxide and other greenhouse gases

match with infrared photons.

They provide the right amount of energy

to shift the gas molecules into their higher energy level.

Shortly after a carbon dioxide molecule

absorbs an infrared photon,

it will fall back to its previous energy level,

and spit a photon back out in a random direction.

Some of that energy then returns

to Earth’s surface,

causing warming.

The more carbon dioxide in the atmosphere,

the more likely that infrared photons

will land back on Earth

and change our climate.

您可能听说过

二氧化碳正在使地球变暖,

但它是如何起作用的呢?

它是像温室的玻璃

还是像隔热毯?

好吧,不完全是。

答案涉及到

一点量子力学,但别担心,

我们将从彩虹开始。

如果您仔细观察通过棱镜分离的阳光

您会看到色带消失的黑暗间隙。

他们去哪儿了?

在到达我们的眼睛之前,

不同的气体吸收

了光谱的这些特定部分。

例如,氧气吸收了

一些暗红色光

,钠吸收了两条黄色光带。

但为什么这些气体会吸收

特定颜色的光呢?

这是我们进入量子领域的地方。

每个原子和分子都有一

组可能的电子能级。

要将其电子从基态

转移到更高的水平

,分子需要获得一定量的能量。

不多也不少。

它从光中获取能量,光

的能量水平比你想象的要多。

光由称为光子的微小粒子组成,

每个光子中的能量

与其颜色相对应。

红光具有较低的能量和较长的波长。

紫光具有更高的能量和更短的波长。

阳光提供了彩虹的所有光子,

因此气体分子可以

选择携带

将分子转移

到下一个能级所需的确切能量的光子。

当这种匹配完成时

,光子随着分子

获得能量

而消散,我们的彩虹中有一个小间隙。

如果光子携带过多或过少的能量

,分子别无选择,

只能让它飞过。

这就是为什么玻璃是透明的。

玻璃中的原子

与可见光中的任何能级都不能很好地配对,

因此光子会通过。

那么,二氧化碳更喜欢哪些光子呢?

彩虹中解释全球变暖的黑线在哪里

好吧,它不存在。

二氧化碳不直接吸收

来自太阳的光。

它吸收来自完全

不同天体的光。

一个似乎根本不发光的:

地球。

如果你想知道为什么我们的星球

似乎没有发光,

那是因为地球不发出可见光。

它发出红外线。

我们眼睛可以看到的光,

包括彩虹的所有颜色,

只是更大的电磁辐射光谱的一小部分

,包括无线电波、微波、

红外线、紫外线、X 射线

和伽马射线。

将这些东西视为光可能看起来很奇怪,

可见光和其他电磁辐射之间并没有根本的区别。

它是相同的能量,

但处于更高或更低的水平。

事实上,

以我们自己的局限来定义可见光这个词有点冒昧。

毕竟,红外线对蛇是可见的,

而紫外线对鸟类是可见的。

如果我们的眼睛能看到

1900 兆赫的光,那么手机

就是手电筒

,手机塔

就像一个巨大的灯笼。

地球会发射红外辐射,

因为温度

高于绝对零的每个物体都会发光。

这称为热辐射。

物体越热,

它发出的光的频率就越高。

当你加热一块铁时,

它会发出越来越多频率的红外光,

然后在450摄氏度左右的温度下,

它的光就会达到可见光谱。

起初,它会看起来很红。

再加上更多的热量,

它会

在所有可见光频率下发出白色光。

这就是传统灯泡

的设计方式

以及它们如此浪费的原因。

它们发出的 95% 的光是我们的肉眼看不见的。

它被浪费为热量。

如果我们的大气中没有温室气体分子

,地球的红外辐射将逃逸到太空。

正如氧气更喜欢暗红色光子一样,

二氧化碳和其他温室气体

与红外光子相匹配。

它们提供适量的能量

以将气体分子转移到更高的能级。

二氧化碳分子在

吸收了一个红外光子后不久,

它会回落到之前的能级,

并在一个随机方向上吐出一个光子。

然后其中一些能量

返回地球表面,

导致变暖。

大气中的二氧化碳

越多,红外光子就越有可能

回到地球

并改变我们的气候。