In the war for information will quantum computers defeat cryptographers Craig Costello

Translator: Joseph Geni
Reviewer: Camille Martínez

I’m in the business
of safeguarding secrets,

and this includes your secrets.

Cryptographers are
the first line of defense

in an ongoing war that’s been
raging for centuries:

a war between code makers

and code breakers.

And this is a war on information.

The modern battlefield
for information is digital.

And it wages across your phones,

your computers

and the internet.

Our job is to create systems that scramble
your emails and credit card numbers,

your phone calls and text messages –

and that includes those saucy selfies –

(Laughter)

so that all of this information
can only be descrambled

by the recipient that it’s intended for.

Now, until very recently,

we thought we’d won this war for good.

Right now, each of your smartphones
is using encryption

that we thought was unbreakable
and that was going to remain that way.

We were wrong,

because quantum computers are coming,

and they’re going to change
the game completely.

Throughout history,
cryptography and code-breaking

has always been this game
of cat and mouse.

Back in the 1500s,

Queen Mary of the Scots thought
she was sending encrypted letters

that only her soldiers could decipher.

But Queen Elizabeth of England,

she had code breakers
that were all over it.

They decrypted Mary’s letters,

saw that she was attempting
to assassinate Elizabeth

and, subsequently,
they chopped Mary’s head off.

A few centuries later, in World War II,

the Nazis communicated
using the Engima code,

a much more complicated encryption scheme
that they thought was unbreakable.

But then good old Alan Turing,

the same guy who invented
what we now call the modern computer,

he built a machine and used it
to break Enigma.

He deciphered the German messages

and helped to bring Hitler
and his Third Reich to a halt.

And so the story has gone
throughout the centuries.

Cryptographers improve their encryption,

and then code breakers fight back
and they find a way to break it.

This war’s gone back and forth,
and it’s been pretty neck and neck.

That was until the 1970s,

when some cryptographers
made a huge breakthrough.

They discovered an extremely
powerful way to do encryption

called “public-key cryptography.”

Unlike all of the prior methods used
throughout history, it doesn’t require

that the two parties that want to send
each other confidential information

have exchanged the secret key beforehand.

The magic of public-key cryptography
is that it allows us to connect securely

with anyone in the world,

whether we’ve exchanged
data before or not,

and to do it so fast that you and I
don’t even realize it’s happening.

Whether you’re texting your mate
to catch up for a beer,

or you’re a bank that’s transferring
billions of dollars to another bank,

modern encryption enables us
to send data that can be secured

in a matter of milliseconds.

The brilliant idea that makes
this magic possible,

it relies on hard mathematical problems.

Cryptographers are deeply interested
in things that calculators can’t do.

For example, calculators can multiply
any two numbers you like,

no matter how big the size.

But going back the other way –

starting with the product and then asking,

“Which two numbers multiply
to give this one?” –

that’s actually a really hard problem.

If I asked you to find which two-digit
numbers multiply to give 851,

even with a calculator,

most people in this room would have
a hard time finding the answer

by the time I’m finished with this talk.

And if I make the numbers a little larger,

then there’s no calculator on earth
that can do this.

In fact, even the world’s
fastest supercomputer

would take longer
than the life age of the universe

to find the two numbers
that multiply to give this one.

And this problem,
called “integer factorization,”

is exactly what each of your smartphones
and laptops is using right now

to keep your data secure.

This is the basis of modern encryption.

And the fact that all the computing power
on the planet combined can’t solve it,

that’s the reason we cryptographers
thought we’d found a way

to stay ahead of the code
breakers for good.

Perhaps we got a little cocky

because just when we thought
the war was won,

a bunch of 20th-century physicists
came to the party,

and they revealed
that the laws of the universe,

the same laws that modern
cryptography was built upon,

they aren’t as we thought they were.

We thought that one object couldn’t be
in two places at the same time.

It’s not the case.

We thought nothing can possibly spin
clockwise and anticlockwise

simultaneously.

But that’s incorrect.

And we thought that two objects
on opposite sides of the universe,

light years away from each other,

they can’t possibly influence
one another instantaneously.

We were wrong again.

And isn’t that always the way
life seems to go?

Just when you think you’ve got
everything covered, your ducks in a row,

a bunch of physicists come along

and reveal that the fundamental laws
of the universe are completely different

to what you thought?

(Laughter)

And it screws everything up.

See, in the teeny tiny subatomic realm,

at the level of electrons and protons,

the classical laws of physics,

the ones that we all know and love,

they go out the window.

And it’s here that the laws
of quantum mechanics kick in.

In quantum mechanics,

an electron can be spinning clockwise
and anticlockwise at the same time,

and a proton can be in two places at once.

It sounds like science fiction,

but that’s only because
the crazy quantum nature of our universe,

it hides itself from us.

And it stayed hidden from us
until the 20th century.

But now that we’ve seen it,
the whole world is in an arms race

to try to build a quantum computer –

a computer that can harness the power
of this weird and wacky quantum behavior.

These things are so revolutionary

and so powerful

that they’ll make today’s
fastest supercomputer

look useless in comparison.

In fact, for certain problems
that are of great interest to us,

today’s fastest supercomputer
is closer to an abacus

than to a quantum computer.

That’s right, I’m talking about
those little wooden things with the beads.

Quantum computers can simulate
chemical and biological processes

that are far beyond the reach
of our classical computers.

And as such, they promise to help us solve
some of our planet’s biggest problems.

They’re going to help us
combat global hunger;

to tackle climate change;

to find cures for diseases and pandemics
for which we’ve so far been unsuccessful;

to create superhuman
artificial intelligence;

and perhaps even more important
than all of those things,

they’re going to help us understand
the very nature of our universe.

But with this incredible potential

comes an incredible risk.

Remember those big numbers
I talked about earlier?

I’m not talking about 851.

In fact, if anyone in here
has been distracted

trying to find those factors,

I’m going to put you out of your misery
and tell you that it’s 23 times 37.

(Laughter)

I’m talking about the much
bigger number that followed it.

While today’s fastest supercomputer
couldn’t find those factors

in the life age of the universe,

a quantum computer
could easily factorize numbers

way, way bigger than that one.

Quantum computers will break
all of the encryption currently used

to protect you and I from hackers.

And they’ll do it easily.

Let me put it this way:

if quantum computing was a spear,

then modern encryption,

the same unbreakable system
that’s protected us for decades,

it would be like a shield
made of tissue paper.

Anyone with access to a quantum computer
will have the master key

to unlock anything they like
in our digital world.

They could steal money from banks

and control economies.

They could power off hospitals
or launch nukes.

Or they could just sit back
and watch all of us on our webcams

without any of us knowing
that this is happening.

Now, the fundamental unit of information
on all of the computers we’re used to,

like this one,

it’s called a “bit.”

A single bit can be one of two states:

it can be a zero or it can be a one.

When I FaceTime my mum
from the other side of the world –

and she’s going to kill
me for having this slide –

(Laughter)

we’re actually just sending each other
long sequences of zeroes and ones

that bounce from computer to computer,
from satellite to satellite,

transmitting our data at a rapid pace.

Bits are certainly very useful.

In fact, anything
we currently do with technology

is indebted to the usefulness of bits.

But we’re starting to realize

that bits are really poor at simulating
complex molecules and particles.

And this is because, in some sense,

subatomic processes can be doing
two or more opposing things

at the same time

as they follow these bizarre rules
of quantum mechanics.

So, late last century,

some really brainy physicists
had this ingenious idea:

to instead build computers
that are founded

on the principles of quantum mechanics.

Now, the fundamental unit of information
of a quantum computer,

it’s called a “qubit.”

It stands for “quantum bit.”

Instead of having just two states,
like zero or one,

a qubit can be an infinite
number of states.

And this corresponds to it being
some combination of both zero and one

at the same time,

a phenomenon that we call “superposition.”

And when we have two qubits
in superposition,

we’re actually working across
all four combinations

of zero-zero, zero-one,
one-zero and one-one.

With three qubits,

we’re working in superposition
across eight combinations,

and so on.

Each time we add a single qubit,
we double the number of combinations

that we can work with in superposition

at the same time.

And so when we scale up
to work with many qubits,

we can work with an exponential
number of combinations

at the same time.

And this just hints at where the power
of quantum computing is coming from.

Now, in modern encryption,

our secret keys, like the two factors
of that larger number,

they’re just long sequences
of zeroes and ones.

To find them,

a classical computer must go through
every single combination,

one after the other,

until it finds the one that works
and breaks our encryption.

But on a quantum computer,

with enough qubits in superposition,

information can be extracted
from all combinations at the same time.

In very few steps,

a quantum computer can brush aside
all of the incorrect combinations,

home in on the correct one

and then unlock our treasured secrets.

Now, at the crazy quantum level,

something truly incredible
is happening here.

The conventional wisdom
held by many leading physicists –

and you’ve got to stay
with me on this one –

is that each combination is actually
examined by its very own quantum computer

inside its very own parallel universe.

Each of these combinations,
they add up like waves in a pool of water.

The combinations that are wrong,

they cancel each other out.

And the combinations that are right,

they reinforce and amplify each other.

So at the end of the quantum
computing program,

all that’s left is the correct answer,

that we can then observe
here in this universe.

Now, if that doesn’t make
complete sense to you, don’t stress.

(Laughter)

You’re in good company.

Niels Bohr, one of
the pioneers of this field,

he once said that anyone
who could contemplate quantum mechanics

without being profoundly shocked,

they haven’t understood it.

(Laughter)

But you get an idea
of what we’re up against,

and why it’s now up to us cryptographers

to really step it up.

And we have to do it fast,

because quantum computers,

they already exist in labs
all over the world.

Fortunately, at this minute,

they only exist
at a relatively small scale,

still too small to break
our much larger cryptographic keys.

But we might not be safe for long.

Some folks believe that secret
government agencies

have already built a big enough one,

and they just haven’t told anyone yet.

Some pundits say
they’re more like 10 years off.

Some people say it’s more like 30.

You might think that
if quantum computers are 10 years away,

surely that’s enough time
for us cryptographers to figure it out

and to secure the internet in time.

But unfortunately, it’s not that easy.

Even if we ignore
the many years that it takes

to standardize and deploy and then
roll out new encryption technology,

in some ways we may already be too late.

Smart digital criminals
and government agencies

may already be storing
our most sensitive encrypted data

in anticipation for
the quantum future ahead.

The messages of foreign leaders,

of war generals

or of individuals who question power,

they’re encrypted for now.

But as soon as the day comes

that someone gets their hands
on a quantum computer,

they can retroactively break
anything from the past.

In certain government
and financial sectors

or in military organizations,

sensitive data has got to remain
classified for 25 years.

So if a quantum computer
really will exist in 10 years,

then these guys are already
15 years too late

to quantum-proof their encryption.

So while many scientists around the world

are racing to try to build
a quantum computer,

us cryptographers are urgently
looking to reinvent encryption

to protect us long before that day comes.

We’re looking for new,
hard mathematical problems.

We’re looking for problems that,
just like factorization,

can be used on our smartphones
and on our laptops today.

But unlike factorization,
we need these problems to be so hard

that they’re even unbreakable
with a quantum computer.

In recent years, we’ve been digging around
a much wider realm of mathematics

to look for such problems.

We’ve been looking at numbers and objects

that are far more exotic
and far more abstract

than the ones that you and I are used to,

like the ones on our calculators.

And we believe we’ve found
some geometric problems

that just might do the trick.

Now, unlike those two-
and three-dimensional geometric problems

that we used to have to try to solve
with pen and graph paper in high school,

most of these problems are defined
in well over 500 dimensions.

So not only are they a little hard
to depict and solve on graph paper,

but we believe they’re even
out of the reach of a quantum computer.

So though it’s early days,

it’s here that we are putting our hope
as we try to secure our digital world

moving into its quantum future.

Just like all of the other scientists,

we cryptographers are tremendously excited

at the potential of living in a world
alongside quantum computers.

They could be such a force for good.

But no matter what
technological future we live in,

our secrets will always be
a part of our humanity.

And that is worth protecting.

Thanks.

(Applause)

译者:Joseph Geni
审稿人:Camille Martínez


从事保护秘密的工作

,这包括你的秘密。

密码学家是

一场持续了几个世纪

的战争的第一道防线:一场密码制造者和密码破解者之间的战争

这是一场信息战。

现代
信息的战场是数字化的。

它通过您的手机

、计算机

和互联网支付。

我们的工作是创建系统来打乱
你的电子邮件和信用卡号码,

你的电话和短信

  • 包括那些俏皮的自拍 -

(笑声

)所有这些信息
只能

由收件人来解扰它的意图 为了。

现在,直到最近,

我们还认为我们已经赢得了这场战争。

现在,您的每部智能手机
都在使用

我们认为牢不可破的加密技术,
并且将保持这种状态。

我们错了,

因为量子计算机即将到来

,它们将
彻底改变游戏规则。

纵观历史,
密码学和密码破解

一直是这场
猫捉老鼠的游戏。

早在 1500 年代,

苏格兰玛丽女王认为
她正在

发送只有她的士兵才能解密的加密信件。

但是英国女王伊丽莎白,

她身上到处
都是密码破解者。

他们解密了玛丽的信件,

发现她正
试图暗杀伊丽莎白

,随后,
他们砍下了玛丽的头。

几个世纪后,在第二次世界大战中

,纳粹
使用 Engima 密码进行通信,这

是一种更复杂的加密方案
,他们认为是牢不可破的。

但是后来好老的艾伦·图灵(Alan Turing),

就是发明
了我们现在所说的现代计算机的那个人,

他建造了一台机器并用它
来破解 Enigma。

他破译了德国的信息,


帮助阻止了希特勒和他的第三帝国。

所以这个故事已经流传
了几个世纪。

密码学家改进了他们的加密,

然后密码破解者反击
,他们找到了破解它的方法。

这场战争来来回回,
而且非常接近。

直到 1970 年代

,一些密码学家
取得了巨大的突破。

他们发现了一种非常
强大的加密方法,

称为“公钥密码术”。

与历史上使用的所有先前方法不同
,它不需要

想要相互发送
机密信息

的两方事先交换密钥。

公钥密码学的魔力
在于它允许我们

与世界上的任何人安全地连接,

无论我们以前是否交换过
数据,

而且速度如此之快,以至于你我
都没有意识到它正在发生。

无论您是给您的伴侣发短信
以赶上啤酒,

还是您是一家正在将
数十亿美元转移到另一家银行的银行,

现代加密使我们
能够在几毫秒内发送可以保护的数据

使
这种魔法成为可能的绝妙想法

,依赖于困难的数学问题。

密码学家对
计算器不能做的事情非常感兴趣。

例如,计算器可以将
任意两个数字相乘,

无论大小。

但反过来说——

从乘积开始,然后问,

“哪两个数字
相乘得到这个?” ——

这实际上是一个非常困难的问题。

如果我让你找出哪个两位数
相乘得到 851,

即使使用计算器,

在我结束本次演讲时,这个房间里的大多数人
都很难找到

答案。

如果我把数字做得更大一点,

那么地球上没有计算器
可以做到这一点。

事实上,即使是世界上
最快的超级计算机

也需要
比宇宙的生命年龄更长的时间

才能找到两个
相乘的数字。

而这个
被称为“整数分解”

的问题正是您的每部智能手机
和笔记本电脑现在

用来保护数据安全的问题。

这是现代加密的基础。

事实上,地球上所有的计算能力
都无法解决这个问题,

这就是我们密码学家
认为我们找到了

一种永远领先于密码
破解者的方法的原因。

也许我们有点自大,

因为就在我们
认为战争已经胜利的时候,

一群 20 世纪的物理学家
来参加聚会

,他们揭示
了宇宙

的法则,现代
密码学所依据的法则,

他们是 不像我们想象的那样。

我们认为一个物体不可能
同时在两个地方。

事实并非如此。

我们认为没有任何东西可以同时
顺时针和逆时针旋转

但这是不正确的。

而且我们认为,
位于宇宙相对两侧的两个物体,

相距光年,

它们不可能
瞬间相互影响。

我们又错了。

生活似乎不总是这样
吗?

就在你认为你已经掌握
了一切,你的鸭子排成一排的时候,

一群物理学家出现了

,揭示宇宙的基本规律

与你想象的完全不同?

(笑声

) 它把一切都搞砸了。

看,在极小的亚原子领域,

在电子和质子的水平上

,经典的物理定律,

我们都知道和喜爱的那些,

它们消失了。

正是在这里,
量子力学定律开始发挥作用。

在量子力学中,

电子可以同时顺时针
和逆时针旋转

,质子可以同时在两个地方。

这听起来像科幻小说,

但这只是因为
我们宇宙的疯狂量子本质,

它对我们隐藏了自己。

直到 20 世纪,它一直对我们隐藏

但现在我们已经看到了
,整个世界都在进行一场军备竞赛

,试图建造一台量子计算机——

一台可以利用
这种奇怪而古怪的量子行为的力量的计算机。

这些东西是如此具有革命性

和如此强大

,以至于它们将使当今
最快的超级计算机

相比之下显得毫无用处。

事实上,对于某些
我们非常感兴趣的问题,

今天最快的超级计算机
更接近算盘而

不是量子计算机。

没错,我说的是
那些有珠子的小木头东西。

量子计算机可以模拟我们经典计算机无法企及的
化学和生物过程

因此,他们承诺帮助我们解决
地球上一些最大的问题。

他们将帮助我们
对抗全球饥饿;

应对气候变化;

为迄今为止我们未能成功的疾病和流行病寻找治疗方法

创造超人的
人工智能;

也许
比所有这些更重要的是,

它们将帮助我们了解
宇宙的本质。

但这种不可思议的潜力

带来了不可思议的风险。

还记得
我之前谈到的那些大数字吗?

我不是在说 851。

事实上,如果这里
有人分心

试图找到这些因素,

我会让你摆脱痛苦
并告诉你它是 23 乘以 37。

(笑声)

我是 谈论
随之而来的更大的数字。

虽然当今最快的超级计算机
无法

在宇宙的生命周期中找到这些因素,但

量子计算机
可以轻松地分解

数字,比那个大得多。

量子计算机将破解
目前

用于保护你我免受黑客攻击的所有加密。

他们会很容易做到的。

让我这样说吧:

如果量子计算是一根长矛,

那么现代加密,

几十年来保护我们的牢不可破的系统,

它就像一个
用薄纸制成的盾牌。

任何可以访问量子计算机的人
都将拥有在我们的数字世界

中解锁任何他们喜欢的东西的万能钥匙

他们可以从银行窃取资金

并控制经济。

他们可以关闭医院
或发射核武器。

或者他们可以坐下来
,在我们的网络摄像头上观看我们所有人,而我们

任何人都不
知道这种情况正在发生。

现在,
我们习惯使用的所有计算机上的基本信息单位,

比如这台计算机,

它被称为“位”。

单个位可以是两种状态之一

:可以是零,也可以是一。

当我
与来自世界另一端的妈妈进行 FaceTime 通话时

——她会
因为这张幻灯片而杀了我——

(笑声)

我们实际上只是在互相发送
长序列的零和

从计算机反弹到计算机的零序列,
从卫星到卫星,

快速传输我们的数据。

比特当然非常有用。

事实上,
我们目前对技术所做的任何事情

都归功于比特的有用性。

但是我们开始

意识到比特在模拟
复杂的分子和粒子方面真的很差。

这是因为,在某种意义上,

亚原子过程可以同时做
两个或多个相反的事情

因为它们遵循
量子力学的这些奇异规则。

因此,上世纪末,

一些非常聪明的物理学家
有了这个巧妙的想法:

改为建造

基于量子力学原理的计算机。

现在,量子计算机的基本信息单位,

被称为“量子比特”。

它代表“量子比特”。 一个量子位可以是无限数量的状态

,而不是只有两种状态
,比如零或一

这对应于它
同时是零和一的某种组合

,我们称之为“叠加”的现象。

当我们有两个
叠加的量子比特时,

我们实际上是在处理

零零、零一、
一零和一一的所有四种组合。

有了三个量子比特,

我们就可以
在八种组合中叠加,

等等。

每次我们添加一个量子比特,
我们可以同时叠加使用的组合数量增加一倍

因此,当我们扩大规模
以处理许多量子比特时,

我们可以同时处理指数
数量的组合

这只是暗示
了量子计算的力量来自哪里。

现在,在现代加密中,

我们的密钥,就像那个更大数字的两个因素一样

它们只是
零和一的长序列。

为了找到它们,

一台经典计算机必须一个接一个地检查
每一个组合,

直到找到一个可以工作
并破解我们加密的组合。

但在量子计算机上

,叠加足够多的量子比特

,可以
同时从所有组合中提取信息。

只需几个步骤

,量子计算机就可以清除
所有不正确的组合,找到正确的组合

,然后解开我们宝贵的秘密。

现在,在疯狂的量子水平上,这里正在发生

一些真正令人难以置信
的事情。

许多领先的物理学家所持有的传统智慧

——你必须
和我一起讨论这一点——

是每个组合实际上都是
由它自己的量子计算机

在它自己的平行宇宙中检查的。

这些组合中的每一个,
它们都像水池中的波浪一样加起来。

错误的组合,

它们相互抵消。

而正确的组合,

它们会相互加强和放大。

所以在量子
计算程序结束时,

剩下的就是正确的答案

,然后我们可以
在这个宇宙中观察到。

现在,如果这
对您来说不完全有意义,请不要强调。

(笑声)

你们相处得很好。

Niels Bohr
是该领域的先驱之一,

他曾经说过,
任何能够思考量子力学

而不被深深震惊的人,

他们都没有理解它。

(笑声)

但是你
知道我们要面对什么,

以及为什么现在要靠我们密码学家

来真正加强它。

而且我们必须尽快完成

,因为量子计算机

已经存在于
世界各地的实验室中。

幸运的是,此时

它们仅以
相对较小的规模存在,

仍然太小而无法破解
我们更大的加密密钥。

但我们可能不会长期安全。

有些人认为秘密
政府机构

已经建立了一个足够大的机构

,只是还没有告诉任何人。

一些专家说
他们更像是10年。

有人说它更像是 30 岁。

你可能会认为,
如果量子计算机是 10 年之后,那

肯定有足够的时间
让我们密码学家弄清楚

并及时保护互联网。

但不幸的是,这并不容易。

即使我们忽略

标准化和部署然后
推出新加密技术所需的多年时间,

在某些方面我们可能已经为时已晚。

聪明的数字犯罪分子
和政府机构

可能已经在存储
我们最敏感的加密数据,

以期待
未来的量子未来。

外国领导人

、战争将领

或质疑权力的个人的信息,

现在都被加密了。

但是一旦

有人
拿到量子计算机的那一天,

他们就可以追溯性地打破
过去的任何事情。

在某些政府
和金融部门

或军事组织中,

敏感数据必须
保密 25 年。

因此,如果量子计算机
真的会在 10 年后出现,

那么这些家伙已经
晚了 15 年,无法

证明他们的加密是量子的。

因此,当世界各地的许多科学家都在

竞相尝试建造
一台量子计算机时,

我们的密码学家们正在迫切地
寻求重新发明加密技术,

以便在这一天到来之前很久就保护我们。

我们正在寻找新的、
困难的数学问题。

我们正在寻找问题,
就像分解一样,

可以
在我们今天的智能手机和笔记本电脑上使用。

但与因式分解不同,
我们需要将这些问题变得如此困难

,以至于它们甚至
用量子计算机都无法破解。

近年来,我们一直在
挖掘更广泛的数学领域

来寻找此类问题。

我们一直在研究比您和我习惯的数字和对象(例如我们计算器上的数字和对象)

更具异国情调
和抽象

得多的数字和对象

而且我们相信我们已经发现了
一些可以解决问题的几何问题

现在,与

我们过去在高中时必须尝试用钢笔和方格纸解决的那些二维和三维几何问题不同,

这些问题中的大多数都是
在超过 500 个维度中定义的。

因此,它们不仅
在方格纸上难以描述和解决,

而且我们相信它们甚至
超出了量子计算机的范围。

因此,尽管

现在还为时过早,但当
我们试图确保我们的数字世界

进入量子未来时,我们将希望寄托在这里。

就像所有其他科学家一样,

我们密码学家

对与量子计算机一起生活在一个世界中的潜力感到非常兴奋

他们可以成为永远的力量。

但无论
我们生活在什么样的技术未来,

我们的秘密将永远
是我们人性的一部分。

这值得保护。

谢谢。

(掌声)