The chemistry of cookies Stephanie Warren

In a time-lapse video,
it looks like a monster coming alive.

For a moment, it sits there innocuously.

Then, ripples move across its surface.

It bulges outwards,
bursting with weird boils.

It triples in volume.

Its color darkens ominously,
and its surface hardens

into an alien topography
of peaks and craters.

Then, the kitchen timer dings.

Your cookie is ready.

What happened inside that oven?

Don’t let the apron deceive you!

Bakers are mad scientists.

When you slide the pan into the oven,

you’re setting off a series
of chemical reactions

that transform one substance, dough,
into another, cookies.

When the dough reaches
92 degrees Fahrenheit,

the butter inside melts,

causing the dough to start spreading out.

Butter is an emulsion,

or mixture of two substances

that don’t want to stay together,

in this case, water and fat,

along with some dairy solids
that help hold them together.

As the butter melts,
its trapped water is released.

And as the cookie gets hotter,
the water expands into steam.

It pushes against the dough
from the inside,

trying to escape through the cookie walls

like Ridley Scott’s chest-bursting alien.

Your eggs may have been home
to squirming salmonella bacteria.

An estimated 142,000 Americans
are infected this way each year.

Though salmonella can live for weeks
outside a living body

and even survive freezing,

136 degrees is too hot for them.

When your dough reaches
that temperature, they die off.

You’ll live to test your fate
with a bite of raw dough

you sneak from your next batch.

At 144 degrees,
changes begin in the proteins,

which come mostly
from the eggs in your dough.

Eggs are composed of dozens
of different kinds of proteins,

each sensitive to a different temperature.

In an egg fresh from the hen,

these proteins look
like coiled up balls of string.

When they’re exposed to heat energy,

the protein strings unfold
and get tangled up with their neighbors.

This linked structure

makes the runny egg nearly solid,

giving substance to squishy dough.

Water boils away at 212 degrees,

so like mud baking in the sun,

your cookie gets dried out
and it stiffens.

Cracks spread across its surface.

The steam that was bubbling
inside evaporates,

leaving behind airy pockets
that make the cookie light and flaky.

Helping this along
is your leavening agent,

sodium bicarbonate,

or baking soda.

The sodium bicarbonate reacts
with acids in the dough

to create carbon dioxide gas,
which makes airy pockets in your cookie.

Now, it’s nearly ready
for a refreshing dunk

in a cool glass of milk.

One of science’s tastiest reactions

occurs at 310 degrees.

This is the temperature
for Maillard reactions.

Maillard reactions result

when proteins and sugars break down
and rearrange themselves,

forming ring-like structures,

which reflect light in a way

that gives foods like Thanksgiving turkey

and hamburgers

their distinctive, rich brown color.

As this reaction occurs,

it produces a range of flavor
and aroma compounds,

which also react with each other,

forming even more complex
tastes and smells.

Caramelization is the last reaction

to take place inside your cookie.

Caramelization is what happens

when sugar molecules
break down under high heat,

forming the sweet, nutty,

and slightly bitter flavor compounds
that define, well, caramel.

And, in fact, if your recipe
calls for a 350 degree oven,

it’ll never happen,

since caramelization
starts at 356 degrees.

If your ideal cookie is barely browned,

like a Northeasterner on a beach vacation,

you could have set
your oven to 310 degrees.

If you like your cookies
to have a nice tan,

crank up the heat.

Caramelization continues
up to 390 degrees.

And here’s another trick:

you don’t need that kitchen timer;

your nose is a sensitive
scientific instrument.

When you smell the nutty, toasty aromas

of the Maillard reaction
and caramelization,

your cookies are ready.

Grab your glass of milk,

put your feet up,

and reflect that science
can be pretty sweet.

在延时视频中,
它看起来像一个活过来的怪物。

有那么一会儿,它无害地坐在那里。

然后,波纹在其表面移动。

它向外凸出,
爆出奇怪的疖子。

它的体积增加了三倍。

它的颜色不祥地变暗
,它的表面硬化

成一个
由山峰和陨石坑组成的外星地形。

然后,厨房计时器响起。

你的饼干准备好了。

那个烤箱里发生了什么?

不要让围裙欺骗你!

面包师是疯狂的科学家。

当您将平底锅滑入烤箱时,

您会引发
一系列化学反应

,将一种物质面团
转化为另一种物质饼干。

当面团达到
92 华氏度时,

里面的黄油融化,

导致面团开始展开。

黄油是一种乳液,

或两种

不想在一起的物质的混合物,

在这种情况下是水和脂肪,

以及
一些有助于将它们保持在一起的乳制品固体。

当黄油融化时,
它被困住的水被释放出来。

随着饼干变热
,水膨胀成蒸汽。

它从里面推着面团

试图

像雷德利斯科特的胸膛爆裂外星人一样穿过饼干墙。

你的鸡蛋可能是
蠕动沙门氏菌的家园。

每年估计有 142,000 名美国人
通过这种方式感染。

虽然沙门氏菌可以在体外存活数周

,甚至可以在冰冻中存活,但

136 度对它们来说太热了。

当你的面团达到
那个温度时,它们就会死掉。

你将

活着用你从下一批偷来的一口生面团来测试你的命运。

在 144 度时,
蛋白质开始发生变化,

主要
来自面团中的鸡蛋。

鸡蛋由几十
种不同种类的蛋白质组成,

每种蛋白质对不同的温度敏感。

在刚从母鸡产下的鸡蛋中,

这些蛋白质看起来
像盘绕起来的线球。

当它们暴露在热能中时

,蛋白质链会展开
并与它们的邻居纠缠在一起。

这种相互连接的结构

使流动的鸡蛋几乎是实心的,

为松软的面团提供了物质。

水在 212 度时沸腾,

所以就像在阳光下烘烤泥浆一样,

你的饼干会变干
并变硬。

裂缝遍布其表面。 里面

冒泡的蒸汽
蒸发了,

留下通风的口袋
,使饼干变得轻盈而片状。

你的膨松剂、

碳酸氢钠

或小苏打可以帮助解决这个问题。

碳酸氢钠与
面团中的酸反应

产生二氧化碳气体,
从而在饼干中形成通风的口袋。

现在,它几乎已经准备好在

一杯凉爽的牛奶中享受清爽的扣篮了。

科学最美味的反应之一

发生在 310 度。

这是
美拉德反应的温度。

当蛋白质和糖类分解并重新排列时,会产生美拉德反应

形成环状结构,这些环状结构

反射光线的方式

使感恩节火鸡和汉堡包等食物呈现

出独特而浓郁的棕色。

随着这种反应的发生,

它会产生一系列风味
和香气化合物,

它们也会相互反应,

形成更复杂的
味道和气味。

焦糖化是

饼干内部发生的最后反应。

焦糖化是

指糖分子
在高温下分解,

形成甜味、坚果

味和微苦味的化合物
,这些化合物定义了焦糖。

而且,事实上,如果你的食谱
需要一个 350 度的烤箱,

它永远不会发生,

因为焦糖化
从 356 度开始。

如果您理想中的饼干几乎没有变成褐色,

就像在海滩度假的东北人一样,

您可以
将烤箱设置为 310 度。

如果你喜欢你的
饼干有一个漂亮的棕褐色,

把火调大。

焦糖化
持续到 390 度。

还有另一个技巧:

你不需要那个厨房计时器;

你的鼻子是一个敏感的
科学仪器。

当你闻到美拉德反应和焦糖化的坚果、烤面包的

香味时

你的饼干就准备好了。

拿起你的一杯牛奶

,抬起你的脚

,想想科学
可以很甜蜜。