Towards Artificial Photosynthesis

[Music]

well here you can see the most

successful

energy conversion system of our planet

yes

i’m talking about plants they have

mastered the ability to harvest the

energy of sunlight

and use it to convert carbon dioxide

into vital chemicals that now sustain

life on earth

this process known as photosynthesis has

been crafted

over billions of years of evolution but

what if we could also learn this

i’m working in the field of artificial

photosynthesis

where this is exactly what we are trying

to achieve

our ultimate aim is to design human-made

materials

able to harvest the energy of light and

use it to produce a useful chemical

on demand let me give you my perspective

our society is strongly dependent on

fossil fuels

we use them as a source to generate

electricity

and as a resource to feed our chemical

industry

but in light of the challenges posed by

climate change

we have to reduce this reliance and

explore renewable resources

well the energy the sun provides to our

planet is the most vast and equally

distributed

source of renewable energy a good

example here

are solar cells just look how quickly

they’ve changed the landscape of the

energy sector

in the last 15 20 years but

solar cells only allow for a very

specific energy conversion

from light to electricity

and while it’s of course great to have

access to zero emission charging and

power

we also need to think of the other

economic sectors that still

heavily rely on fossil fuels

our transportation means for example

cars and planes

are still dependent on petroleum

chemical industry products

petrochemicals plastics are still

derived from oil

and natural gas well all these

industries continue to generate

greenhouse co2 and thus continue to

contribute to

global warming so the point is

although solar cells are great at

utilizing sunlight

they are simply not enough in order to

facilitate the transition to the

sustainable economy of the future

we need a green process that also allows

a direct production of chemicals

fuels and plastics using sunlight

imagine for example that cars can be run

on a fuel

that is derived solely from water and

sunlight

a fuel that has no

toxic byproducts and has a zero carbon

footprint

that would be the aim in our research

group a team of chemists physicists and

material scientists

approach this problem from a very

fundamental perspective

our research takes inspiration from

natural photosynthesis

the process in which plants convert

stable and abundant molecules

water and carbon dioxide into variable

sugars and other chemicals using the

energy of light photons

well we aim to design human made

materials

that mimic what nature has been doing

for billions of years

this is a big task so where do you start

how can we learn from nature

the first essential step to this point

is to make sure that we understand how

plants photosynthesize

and here oh into the enormous scientific

progress

of the last 80 years we have learned a

great deal on the structure and

functions of natural system

just to give you a taste of it let me

show you its core

this is a leaf a basic unit of

photosynthesis

but is it if we magnify its structure

by a thousand times we will enter the

world of living cells

inside the cells of the leaf you see

these

green colored circles these are

chloroplasts

the main photosynthetic unit of the

plant

on the microscopic level but this is not

enough

only if we magnify the structure of the

chloroplast by another thousand times

will you see the world of molecular

machines

responsible for the most important

functions of photosynthesis

so here on the scale of 10 to 20

nanometers

you will find the so-called photosystem

2

and it is here on this molecular scale

where photosynthesis truly begins what

you can

see on the schematic reconstruction is a

bunch of molecules

proteins enzymes lipids co-factors

they are all intertwined to create this

fascinating

but highly complex biological system

so now if you want to create an

artificial system like that

you could of course think of replicating

this entire structure one-to-one

using the tools of chemistry but this

would be

too complex instead

why don’t we try to get inspired by this

structure

and only create its minimalistic version

that only contains the necessary

functions

so far we have learned that

functions of natural photosynthetic

systems can be downgraded to

three main processes one of them

is called light absorption the process

that converts the energy of incoming

light photons into a different form of

energy useful for the plant

these small molecules chlorophylls are

responsible for this

step the second

very important function we call it

catalytic

is in charge of the chemical conversion

and generation of

high value sugars that sustain plant

growth

to accomplish this step nature employs a

variety of bio-organic and bio-inorganic

molecules

such as this water oxidation cluster

here

well the third function is to basically

link

these two main parts so that they can

communicate effectively between each

other

well now after we understand the natural

system and its main parts

we can think of designing its artificial

version

to mimic the main functions of natural

photosynthesis

we need a component able to absorb light

a component able to drive the chemical

reaction

and the link between them well it turns

out that you can simplify

this scheme even further so you end up

with such an integrated system

in which these two major components are

linked by design

well this final material is called a

photo catalyst

this is our artificial copy of the

natural photosynthetic system

as it can do both absorb energy of light

photons

and drive the chemical conversion all

right

seems like a practical concept but

does this photocatalyst actually work

let me demonstrate to you the

feasibility of this approach

by looking at the dream reaction of

every chemist

water splitting water is a very simple

substance made of hydrogen and oxygen

atoms

still splitting water into its

constituents

represents one of the most challenging

processes

that’s interesting this is exactly the

reaction that plants can do so well

and that is the reason why our

atmosphere is full of breathable oxygen

but in addition to oxygen if you split

water you also

create hydrogen a very simple gas

that is not only an excellent energy

storage

molecule of the future but is also a

very important component of our

chemical industry so if hydrogen can be

produced

using renewable resources such as water

and sunlight we could contribute to the

climate change issue significantly

but let me come back to the

demonstration

well if you use compatible components

your catalyst and absorber and design

your photocatalyst just right

you can end up with a material that

basically looks like a powder

but is actually made of ultra small

particles

well in this experiment i deposited this

powder onto a piece of window glass

so i took this glass and put it in a

container with water

as expected nothing happens in the dark

but once my photocatalyst sees the light

the reaction begins

light gets absorbed the generated energy

gets transferred to the catalytic

component

which facilitates splitting of water

molecules

as a result we see bubbles of hydrogen

gas emerging from the surface

to be collected and used this process is

extremely simple

it does not require any sophisticated

device

or any additional energy input and

results in a generation of a fuel

from even wastewater and light

well achieving water splitting is a very

important milestone

using photocatalysts but we need to

dream bigger

the next level we want to achieve is to

use these artificial systems

to actually mimic the entire process of

photosynthesis

let me remind you in photosynthesis

plants convert

carbon dioxide into chemicals

so the ultimate aim here would be to

take advantage of the

excessive waste amount of co2 in our

atmosphere

and to rather treat this co2 as a

valuable resource

that can be converted into

interesting chemical products using a

photocatalyst

well this is a goal and if we succeed we

can for example turn co2

into a compound called ethylene which is

the main precursor to plastics

so how can we get there

to allow for such a complex reaction and

such

a selective product formation we have to

take a step back

and reconsider the photocatalyst design

so you already know it is the catalytic

component of the entire system

that is responsible for the chemical

conversion

so if we want to tune the product of our

reaction be it hydrogen

ethanol or ethylene we

need to make sure we can design the

catalytic component in a predictable way

but as of now most of the contemporary

photocatalysts are built

using the catalytic components that are

structurally

extremely complex so achieving this

control

turns into a huge challenge well in my

research

i want to approach this problem by

constructing a photocatalyst system that

is based on

structurally well-defined and thus

tunable

molecular catalysts why would it be of

advantage

well in chemistry it is only at the

molecular

scale at the molecular level where you

can

truly understand the catalytic process

so

the use of this molecular catalyst will

allow me to

unravel this missing link between their

structure

and performance these photocatalysts

will be able to conduct even

complex chemical conversions on demand

this is a very ambitious aim that we

have

but i’m very confident we can actually

achieve it

i have already started recruiting some

excellent future phd students

to contribute to the latest stages of

this project

all right let me wrap it up

natural photosynthesis uses sunlight

to turn co2 and water into a specific

set of chemicals

useful for the plant artificial

photosynthesis

mimics nature but also allows to design

a system for

a specific desired chemical conversion

well if we can achieve that and when we

achieve that we will not only have

access to

green hydrogen we will also be able to

produce

carbon neutral plastics fuels and

chemicals

so next time you see a plant

look closer think of the beauty

and complexity of the biological

photosynthetic machine that is inside

it and think of all the possibilities we

will have

once we learn how to tune it to our

advantage

thank you

[Music]

you

[音乐

] 在这里,您可以看到

我们星球上最成功的能量转换系统,

是的,

我说的是植物,它们已经

掌握了收集

阳光能量

并将二氧化碳

转化为重要化学物质的能力,这些化学物质现在可以维持

生命 地球

这个被称为光合作用的过程已经

经过数十亿年的进化而精心制作,

但如果我们也能学到这一点,

我正在人工

光合作用

领域工作,这正是我们正在

努力实现

的目标,我们的最终目标是设计人类 - 制造的

材料

能够收集光能并根据需要

使用它来生产有用的化学物质

让我告诉你我的观点

我们的社会非常依赖

化石燃料,

我们将它们用作发电

和养活我们的资源 化工

行业,

但鉴于气候变化带来的挑战,

我们必须减少这种依赖,并

充分利用太阳能提供的可再生资源 对我们

星球的 IDE 是最广泛且分布最均匀

的可再生能源 一个很好的

例子

就是太阳能电池 看看

它们

在过去 15 到 20 年中改变能源行业格局的速度有多快,但

太阳能电池只允许非常

从光到电的特定能量转换

,虽然

获得零排放充电和

电力当然很棒,但

我们还需要考虑仍然严重依赖化石燃料的其他

经济部门,

我们的交通工具(例如

汽车和飞机)

仍然依赖 关于石油

化工产品 石油化工产品

塑料仍然

来自石油

和天然气 所有这些

行业都继续产生

温室二氧化碳,因此继续

导致

全球变暖,所以重点是,

尽管太阳能电池

擅长利用阳光,

但它们根本不够 为了

促进向

未来可持续经济的过渡,

我们需要格力 还允许

使用阳光直接生产化学

燃料和塑料的过程

,例如,想象汽车可以使用

仅从水和

阳光中提取

的燃料,这种燃料没有

有毒副产品,并且碳足迹为零

,这将是 我们研究小组的目标是

一个由化学家、物理学家和材料科学家组成的团队

从一个非常

基本的角度来解决这个问题

我们的研究从

自然

光合作用中汲取

灵感

光子

的能量 我们的目标是设计

模仿大自然数十亿年来所做的人造材料

这是一项艰巨的任务,所以你从哪里开始

我们如何从大自然中学习

到这一点的第一个重要步骤

是 确保我们了解植物是如何进行

光合作用

的 在过去的 80 年里,我们

在自然系统的结构和功能方面学到了很多东西,

只是为了让你尝尝它,让我

向你展示它的核心,

这是一片叶子,是光合作用的基本单位,

但如果我们将它的结构放大

一千次我们将进入

叶子细胞内的活细胞世界 你会看到

这些

绿色圆圈 这些是

叶绿体

在微观层面上是植物的主要光合作用单位 但

仅当我们放大其结构时这还不够

叶绿体再增加一千倍,

你会看到负责光合作用最重要功能的分子机器的世界,

所以在 10 到 20 纳米的尺度上,

你会发现所谓的光系统

2

,在这个分子尺度

上,光合作用 真正开始你

在示意图重建中看到的是

一堆分子

蛋白质酶脂质辅因子

它们都交织在一起创造了 一个

迷人

但高度复杂的生物系统,

所以现在如果你想创建一个这样的

人工系统,

你当然可以考虑使用化学工具

一对一地复制整个结构

,但这

太复杂了,

为什么不呢? 我们试图从这种结构中获得灵感

,只创建它的简约版本

,它只包含必要的

功能

到目前为止我们已经了解到,

自然光合作用

系统的功能可以降级为

三个主要过程,其中一个

称为光吸收。

入射光光子的

能量转化为对植物有用的不同形式的能量

这些小分子叶绿素

负责这

一步 我们称之为催化的第二个

非常重要的功能

是负责化学转化

产生维持植物生长的高价值糖

为了完成这一步,大自然采用了

多种生物有机和生物无机

分子

像这样的水氧化簇

在这里

很好第三个功能是基本上

将这两个主要部分联系起来,以便它们

之间可以很好地相互交流,

现在我们了解了自然

系统及其主要部分之后,

我们可以考虑设计它的人工

版本 模仿自然光合作用的主要功能

我们需要一个能够吸收光

的组件 一个能够驱动化学反应的组件

以及它们之间的良好联系 事实

证明,您可以

进一步简化此方案,最终

得到这样一个集成

系统 这两个主要成分

通过设计

很好地联系在一起这种最终材料称为

光催化剂

这是我们对

自然光合作用系统的人工复制,

因为它既可以吸收

光子的能量

又可以驱动化学转化,这

似乎是一个实用的概念

但是这种光催化剂真的有效

吗让我向你展示

这种方法的可行性

通过观察每个化学家的梦想反应

水分解水是一种非常简单的

物质,由氢和氧

原子组成,

仍然将水分解成其

成分

代表最具挑战性的

过程

之一有趣的是这

正是植物可以做得很好

的反应 这就是为什么我们的

大气中充满了可呼吸的氧气,

但是除了氧气之外,如果你将水分解,

你还会

产生氢气,这是一种非常简单的气体

,它不仅是未来极好的能量

储存

分子,而且也是

我们生命中非常重要的组成部分。

因此,如果可以

使用水和阳光等可再生资源生产氢气

,我们可以为

气候变化问题做出重大贡献,

如果您使用兼容的组件

您的催化剂和吸收剂并设计

适合您的光催化剂,让我回到演示中

最终得到的材料

基本上看起来像粉末,

但实际上 y

在这个实验中很好地由超小颗粒制成 我将这种

粉末沉积在一块窗玻璃上,

所以我把这个玻璃放在一个

装有水的容器中,

正如预期的那样,在黑暗中什么都没有发生,

但是一旦我的光催化剂看到

光,反应就开始了

光被吸收,产生的能量

被转移到催化

成分

,促进水

分子的分裂,结果我们看到

从表面出现的氢气气泡

被收集和使用这个过程

非常简单

,不需要任何复杂的

设备

或任何 额外的能量输入并

产生燃料

,甚至从废水和光

井中产生燃料实现水分解是使用光催化剂的一个非常

重要的里程碑,

但我们需要

更大

的梦想,我们想要实现的下一个目标是

使用这些人工系统

来实际模拟 光合作用的全过程

让我提醒你植物在光合作用

中转化为

二氧化碳 氧化成化学物质,

因此这里的最终目标是

利用

我们大气中过量的二氧化碳废物,

并将这种二氧化碳视为一种

宝贵的资源

,可以使用光催化剂将其转化为

有趣的化学产品,

这是一个目标和 如果我们成功了

,例如,我们可以将二氧化碳

转化为一种叫做乙烯的化合物,它是

塑料的主要前体,

那么我们如何才能到达那里

以允许如此复杂的反应和

如此选择性的产物形成,我们必须

退后一步

,重新考虑 光催化剂设计,

所以你已经知道它

是整个系统的催化成分

,它负责化学

转化,

所以如果我们想调整我们的反应产物,

无论是氢

乙醇还是乙烯,我们

需要确保我们可以设计

催化成分 以一种可预测的方式,

但截至目前,大多数当代

光催化剂

都是使用

结构上非常

复杂的催化成分制造的 非常复杂,因此

在我的

研究中

实现这种控制变成了一个巨大

的挑战 只有

在分子水平上

才能

真正了解催化过程的分子尺度,

所以使用这种分子催化剂

将使我能够

解开它们的

结构

和性能之间缺失

的环节

这是我们的一个非常雄心勃勃的目标,

但我非常有信心我们能够真正

实现它

我已经开始招募一些

优秀的未来博士生

来为这个项目的最新阶段做出贡献

好吧让我总结一下

自然光合作用 利用阳光

将二氧化碳和水转化为一

对植物艺术有用的特定化学物质 官方

光合作用

模拟自然,但如果我们能够实现这一目标,我们还可以设计

一个系统来

实现特定的所需化学

转化,当我们

实现这一目标时,我们不仅

可以获得

绿色氢,我们还将能够

生产

碳中性塑料燃料和

化学品

所以下次你看到植物时

仔细想想

它内部的生物光合作用机器的美丽

和复杂性,想想

一旦我们学会如何将它调整到我们的

优势,我们将拥有的所有可能性

谢谢

[音乐]