What happens to your brain during a migraine Marianne Schwarz

A throbbing, pounding headache.

Bright zigzagging lines
across your field of vision.

Sensitivity to light, lingering fatigue,
disrupted sleep.

A migraine can include any
of these symptoms.

While an incapacitating headache is one of
the most common experiences of migraine,

the word “headache” doesn’t really capture
the wide array of experiences

a migraine can entail.

No two are alike,
and some don’t even involve a headache.

So what then is a migraine?
What’s happening in the brain to cause it?

To trace a migraine’s anatomy,

we have to begin in the days and hours
leading up to a migraine,

when people often identify warning signs
ranging from fatigue or mood changes,

to bursts of yawning,
sleep disruption, nausea,

light and sound sensitivity,
or even increased thirst.

These warning signs point
to a particular part of the brain:

the hypothalamus.

The hypothalamus normally controls
the systems behind these symptoms—

our body’s internal hormonal balances,
circadian rhythms and water regulation.

It has wide connections
throughout the brain,

and is more active than usual
in the days before migraine.

Another common warning sign
is the migraine aura,

which can take the form
of transient visual changes,

tingling, or even trouble speaking.

These sensations come from a change
in charge across cell membranes

that leads to spreading changes in brain
activity and blood flow across the brain.

We don’t know what triggers
this change in charge,

but it can spread quickly
over the surface of the brain,

causing different aura symptoms
depending on the affected area.

If it inches over the visual cortex,
for example,

it may cause an image or blind spot
to spread over the visual field.

During the headache phase,
the trigeminal nerve plays a key role.

The trigeminal nerve normally transmits
touch, temperature, and other sensations

from the skin to most of the face,
part of the scalp,

and some of the blood vessels
and layers covering the cerebral cortex.

Once activated, the trigeminal nerve
transmits pain signals.

During a migraine, this pain pathway
becomes sensitized,

meaning the threshold for provoking
pain is lowered.

Sensations that would usually
be pain-free,

such as coughing, bending over,
or light and sound, can become painful.

Migraines are as common
as they are diverse,

affecting as many as 33% of women
and 13% of men in their lifetimes.

Still, there’s much we don’t know
about them.

We can see that migraine
is a neurological disorder

affecting multiple parts of the brain—

the brainstem, cerebral hemispheres,
and the nerves themselves.

But we don’t know for sure what
exactly triggers each step,

why some people get migraines
and not others,

why so many more women do than men,

or why people’s migraine patterns
sometimes change over their lifetimes.

Hormonal fluctuations are thought to have
a role in some of these things:

some women experience a significant
reduction in migraine frequency

after menopause,
when sex hormone fluctuations are fewer.

Meanwhile, just before menopause,
these fluctuations increase,

and some women experience
worsening or new headaches.

People with migraines
are more likely to suffer from depression,

panic disorder, sleep disorders,
and strokes, among other illnesses.

The relationship with these diseases
is likely complex,

possibly reflecting the effect of migraine
on those diseases or vice versa,

or reflecting their shared genetic basis.

Genetics almost certainly play a role,
although with a few exceptions,

there’s no single gene
that causes migraines.

Certain genes control how easily
our brains’ neurons

are excited by environmental stimuli and
how readily they transmit painful signals.

It’s possible that the neurons in the
brains of people who experience migraines

are more easily triggered
by environmental stimuli

and less likely to block painful signals.

While there’s no simple way to explain
what happens in our brains

with this complex disorder,

one thing is for sure:
migraine is much more than a headache.

一阵抽痛,剧烈的头痛。

明亮的锯齿形线条
贯穿您的视野。

对光敏感,挥之不去的疲劳,
扰乱睡眠。

偏头痛可能包括
任何这些症状。

虽然无法控制的头痛是
偏头痛最常见的经历之一,

但“头痛”这个词并不能真正体现

偏头痛可能带来的广泛经历。

没有两个是一样的
,有些甚至不涉及头痛。

那么什么是偏头痛?
大脑中发生了什么导致它?

要追踪偏头痛的解剖结构,我们必须从偏头痛发生前

的几天和几小时开始

那时人们通常会识别出
从疲劳或情绪变化

到突然打哈欠、
睡眠中断、恶心、

光和声音敏感等警告信号,
或者 甚至增加了口渴。

这些警告信号
指向大脑的一个特定部分:

下丘脑。

下丘脑通常控制
着这些症状背后的系统——

我们身体的内部荷尔蒙平衡、
昼夜节律和水分调节。


在整个大脑中有着广泛的联系,

并且
在偏头痛前几天比平时更活跃。

另一个常见的警告信号
是偏头痛先兆,

它可以表现
为短暂的视觉变化、

刺痛,甚至说话困难。

这些感觉
来自细胞膜

上的电荷变化,导致大脑
活动和大脑血流变化的扩散。

我们不知道是什么触发了
这种电荷变化,

但它可以
在大脑表面迅速传播,

根据受影响的区域引起不同的先兆症状。 例如,

如果它在视觉皮层上方几英寸

它可能会导致图像或盲点
在视野中蔓延。

在头痛阶段
,三叉神经起着关键作用。

三叉神经通常将
触觉、温度和其他感觉

从皮肤传递到大部分面部、
部分头皮

以及覆盖大脑皮层的一些血管和层。

一旦被激活,三叉神经就会
传递疼痛信号。

在偏头痛期间,这种疼痛通路
变得敏感,

这意味着引发疼痛的阈
值降低。

通常无痛的感觉,

例如咳嗽、弯腰
或光亮声音,可能会变得疼痛。

偏头痛既
常见又多样,在其一生中

影响多达 33% 的女性
和 13% 的男性。

不过,我们对它们还有很多不知道
的地方。

我们可以看到,偏头痛
是一种影响大脑多个部位的神经系统疾病——

脑干、大脑半球
和神经本身。

但我们不确定
究竟是什么触发了每一步,

为什么有些人会偏头痛
而不是其他人,

为什么女性比男性多,

或者为什么人们的偏头痛模式
有时会在他们的一生中发生变化。

荷尔蒙波动被认为
在其中一些方面起作用:当性荷尔蒙波动较少时,

一些女性在绝经后
偏头痛频率显着降低

与此同时,就在更年期之前,
这些波动会增加

,一些女性会出现
恶化或新的头痛。

偏头痛
患者更容易患上抑郁症、

恐慌症、睡眠障碍
和中风等疾病。

与这些疾病的关系
可能很复杂,

可能反映了偏头痛
对这些疾病的影响,反之亦然,

或者反映了它们共同的遗传基础。

遗传学几乎肯定会起作用,
尽管除了少数例外,

没有一个基因
会导致偏头痛。

某些基因控制着
我们大脑的神经元

被环境刺激激发的难易程度,
以及它们传递痛苦信号的难易程度。

偏头痛患者大脑中的神经元可能

更容易
被环境刺激触发,

并且不太可能阻止疼痛信号。

虽然没有简单的方法来解释这种复杂疾病
在我们的大脑中发生了什么

,但

可以肯定的是:
偏头痛不仅仅是头痛。