A young scientists quest for clean water Deepika Kurup

Every summer, my family and I
travel across the world,

3,000 miles away

to the culturally diverse
country of India.

Now, India is a country infamous
for its scorching heat and humidity.

For me, the only relief from this heat
is to drink plenty of water.

Now, while in India,

my parents always remind me
to only drink boiled or bottled water,

because unlike here in America,

where I can just turn on a tap
and easily get clean, potable water,

in India, the water is often contaminated.

So my parents have to make sure

that the water we drink is safe.

However, I soon realized

that not everyone is fortunate enough

to enjoy the clean water we did.

Outside my grandparents' house
in the busy streets of India,

I saw people standing in long lines

under the hot sun

filling buckets with water from a tap.

I even saw children,

who looked the same age as me,

filling up these clear plastic bottles

with dirty water
from streams on the roadside.

Watching these kids

forced to drink water

that I felt was too dirty to touch

changed my perspective on the world.

This unacceptable social injustice

compelled me to want to find a solution

to our world’s clean water problem.

I wanted to know
why these kids lacked water,

a substance that is essential for life.

And I learned that we are facing

a global water crisis.

Now, this may seem surprising,

as 75 percent of our planet
is covered in water,

but only 2.5 percent
of that is freshwater,

and less than one percent
of Earth’s freshwater supply

is available for human consumption.

With rising populations,

industrial development
and economic growth,

our demand for clean water is increasing,

yet our freshwater resources
are rapidly depleting.

According to the
World Health Organization,

660 million people in our world

lack access to a clean water source.

Lack of access to clean water
is a leading cause of death

in children under the age of five
in developing countries,

and UNICEF estimates that 3,000 children

die every day from
a water-related disease.

So after returning home
one summer in eighth grade,

I decided that I wanted
to combine my passion

for solving the global water crisis

with my interest in science.

So I decided that the best thing to do

would be to convert my garage
into a laboratory.

(Laughter)

Actually, at first I converted
my kitchen into a laboratory,

but my parents didn’t really approve
and kicked me out.

I also read a lot of journal papers
on water-related research,

and I learned that currently
in developing countries,

something called solar disinfection,

or SODIS, is used to purify water.

In SODIS, clear plastic bottles
are filled with contaminated water

and then exposed to sunlight
for six to eight hours.

The UV radiation from the sun

destroys the DNA
of these harmful pathogens

and decontaminates the water.

Now, while SODIS is really easy to use
and energy-efficient,

as it only uses solar energy,

it’s really slow,

as it can take up to two days
when it’s cloudy.

So in order to make
the SODIS process faster,

this new method called photocatalysis

has recently been used.

So what exactly is this photocatalysis?

Let’s break it down:

“photo” means from the sun,

and a catalyst is something
that speeds up a reaction.

So what photocatalysis is doing

is it’s just speeding up
this solar disinfection process.

When sunlight comes in
and strikes a photocatalyst,

like TiO2, or titanium dioxide,

it creates these
really reactive oxygen species,

like superoxides, hydrogen peroxide
and hydroxyl radicals.

These reactive oxygen species

are able to remove bacteria and organics

and a whole lot of contaminants
from drinking water.

But unfortunately,
there are several disadvantages

to the way photocatalytic SODIS
is currently deployed.

See, what they do is they take
the clear plastic bottles

and they coat the inside
with this photocatalytic coating.

But photocatalysts like titanium dioxide

are actually commonly used in sunscreens

to block UV radiation.

So when they’re coated
on the inside of these bottles,

they’re actually blocking
some of the UV radiation

and diminishing the efficiency
of the process.

Also, these photocatalytic coatings

are not tightly bound
to the plastic bottle,

which means they wash off,
and people end up drinking the catalyst.

While TiO2 is safe and inert,

it’s really inefficient
if you keep drinking the catalyst,

because then you have
to continue to replenish it,

even after a few uses.

So my goal was
to overcome the disadvantages

of these current treatment methods

and create a safe, sustainable,

cost-effective and eco-friendly
method of purifying water.

What started off as an eighth grade
science fair project

is now my photocatalytic composite
for water purification.

The composite combines
titanium dioxide with cement.

The cement-like composite can be formed
into several different shapes,

which results in an extremely
versatile range of deployment methods.

For example, you could create a rod

that can easily be placed
inside water bottles for individual use

or you could create a porous filter
that can filter water for families.

You can even coat the inside
of an existing water tank

to purify larger amounts of water

for communities
over a longer period of time.

Now, over the course of this,

my journey hasn’t really been easy.

You know, I didn’t have access
to a sophisticated laboratory.

I was 14 years old when I started,

but I didn’t let my age deter me

in my interest
in pursuing scientific research

and wanting to solve
the global water crisis.

See, water isn’t
just the universal solvent.

Water is a universal human right.

And for that reason,

I’m continuing to work
on this science fair project from 2012

to bring it from the laboratory
into the real world.

And this summer,
I founded Catalyst for World Water,

a social enterprise aimed at catalyzing
solutions to the global water crisis.

(Applause)

Alone, a single drop of water
can’t do much,

but when many drops come together,

they can sustain life on our planet.

Just as water drops
come together to form oceans,

I believe that we all must come together

when tackling this global problem.

Thank you.

(Applause)

Thank you.

(Applause)

每年夏天,我和我的家人都会
环游世界,前往

3,000 英里

外的印度这个多元文化的
国家。

现在,印度是一个
因炎热和潮湿而臭名昭著的国家。

对我来说,从这种炎热中解脱的唯一方法
就是多喝水。

现在,在印度,

我的父母总是提醒
我只喝开水或瓶装水,

因为不像在美国

,我只需打开水龙头就可以
轻松获得干净的饮用水,

在印度,水经常被污染。

所以我的父母必须

确保我们喝的水是安全的。

然而,我很快意识到

,并不是每个人都

有幸享受我们所做的清洁水。

在印度繁忙的街道上,我祖父母的房子外面,

我看到人们

在烈日下

排着长队,用水龙头给水桶装水。

我什至

看到和我年龄相仿的孩子们用路边溪流的脏水

装满这些透明的塑料瓶

看着这些孩子

被迫

喝我觉得脏得不能碰的水,

改变了我对世界的看法。

这种不可接受的社会不公正

迫使我想找到

解决我们世界清洁水问题的方法。

我想知道
为什么这些孩子缺乏水,

一种对生命至关重要的物质。

我了解到我们正

面临全球水资源危机。

现在,这似乎令人惊讶,

因为我们星球的 75%
被水覆盖,

但其中只有 2.5
% 是淡水,

而地球上只有不到 1%
的淡水

供应可供人类消费。

随着人口增长、

工业发展
和经济增长,

我们对清洁水的需求不断增加,

但我们的淡水资源
正在迅速枯竭。

根据
世界卫生组织的数据,

我们世界上有 6.6 亿人

无法获得清洁的水源。

缺乏清洁水
是发展中国家

5 岁以下儿童死亡的主要原因

,联合国儿童基金会估计,每天有 3,000 名儿童

死于与
水有关的疾病。

因此,
在八年级的一个夏天回到家后

,我
决定将自己

对解决全球水资源危机的热情

与对科学的兴趣结合起来。

所以我决定最好的

办法是将我的车库
改造成实验室。

(笑声)

其实一开始
我把厨房改成了实验室,

但我父母不同意
,把我赶了出去。

我还阅读了很多
关于水相关研究的期刊论文

,我了解到目前
在发展中国家,

一种叫做太阳能消毒

或 SODIS 的东西被用来净化水。

在 SODIS 中,透明塑料
瓶装满受污染的水

,然后暴露在阳光
下六到八小时。

来自太阳的紫外线辐射

会破坏
这些有害病原体的 DNA

并净化水。

现在,虽然 SODIS 非常易于使用
且节能,

因为它只使用太阳能,

但它真的很慢,

因为多云时可能需要两天时间

所以为了
让SODIS过程更快,最近使用了

这种称为光催化的新方法

那么这种光催化究竟是什么?

让我们分解一下:

“照片”意味着来自太阳,

而催化剂
是加速反应的东西。

因此,光催化

所做的只是加速了
这种太阳能消毒过程。

当阳光进入
并撞击光催化剂(

如 TiO2 或二氧化钛)时,

它会产生这些
真正具有活性的氧物质,

如超氧化物、过氧化氢
和羟基自由基。

这些活性

氧能够去除饮用水中的细菌和有机物

以及大量污染物

但不幸的是,
目前部署

光催化 SODIS 的方式存在几个缺点

看,他们所做的就是
拿走透明的塑料瓶

,然后在里面
涂上这种光催化涂层。

但实际上,像二氧化钛这样的光催化剂

通常用于防晒霜中

以阻挡紫外线辐射。

因此,当它们涂
在这些瓶子的内部时,

它们实际上会阻挡
一些紫外线辐射

并降低
过程的效率。

此外,这些光催化涂层

与塑料瓶的结合并不紧密,

这意味着它们会被洗掉
,人们最终会喝下催化剂。

虽然二氧化钛是安全且惰性的,


如果你一直喝催化剂,它的效率真的很低,

因为你必须
继续补充它,

即使在使用了几次之后。

所以我的目标
是克服

这些现有处理方法的缺点

,创造一种安全、可持续、

经济高效和环保的
水净化方法。

最初是一个八年级的
科学展览项目

,现在是我
用于水净化的光催化复合材料。

该复合材料将
二氧化钛与水泥结合在一起。

类似水泥的复合材料可以
形成几种不同的形状,

从而产生极其
通用的部署方法。

例如,您可以创建一个

可以轻松
放入水瓶中供个人使用的杆,

或者您可以创建一个
可以过滤家庭用水的多孔过滤器。

您甚至可以在现有水箱的内部涂上涂层,

以便
在更长的时间内为社区净化更多的水。

现在,在此过程中,

我的旅程并不容易。

你知道,我无法
进入一个复杂的实验室。

我开始时只有 14 岁,

但我并没有让我的年龄阻止

我对
从事科学研究


解决全球水危机的兴趣。

看,水
不仅仅是万能溶剂。

水是一项普遍的人权。

出于这个原因,


从 2012 年开始继续致力于这个科学博览会项目

,将其从实验室
带入现实世界。

今年夏天,
我创立了 Catalyst for World Water,这

是一家旨在
促进全球水资源危机解决方案的社会企业。

(鼓掌)

一滴水
不能单独做很多事情,

但是当很多水滴聚在一起时,

它们可以维持地球上的生命。

就像
水滴汇聚成海洋一样,

我相信

在解决这个全球性问题时,我们都必须团结起来。

谢谢你。

(掌声)

谢谢。

(掌声)