How do brain scans work John Borghi and Elizabeth Waters

As far as we know,

there’s only one thing in our solar system
sophisticated enough to study itself:

the human brain.

But this self-investigation
is incredibly challenging;

a living brain is shielded
by a thick skull,

swaddled in layers of protective tissue,

and made up of billions of tiny,
connected cells.

That’s why it’s so difficult to isolate,
observe, and understand diseases

like Alzheimer’s.

So how do we study living brains
without harming their owners?

We can use a trio of techniques
called EEG,

fMRI,

and PET.

Each measures something different
and has its own strengths and weaknesses,

and we’ll look at each in turn.

First is EEG, or electroencephalography,

which measures electrical
activity in your brain.

As brain cells communicate,
they produce waves of electricity.

Electrodes placed on the skull pick
up these waves,

and differences in the signals detected
between electrodes

provide information
about what’s happening.

This technique was invented
almost 100 years ago,

and it’s still used to diagnose conditions
like epilepsy and sleep disorders.

It’s also used to investigate what areas
of the brain are active

during learning or paying attention.

EEG is non-invasive,

relatively inexpensive,

and fast:

it can measure changes that occur
in just milliseconds.

Unfortunately, it’s hard to determine

exactly where any particular
pattern originates.

Electrical signals are generated
constantly all over the brain

and they interact with each other to
produce complex patterns.

Using more electrodes or sophisticated
data-processing algorithms can help.

But in the end, while EEG can tell you
precisely when certain activity occurs,

it can’t tell you precisely where.

To do that, you’d need another technique,

such as functional magnetic
resonance imaging, or fMRI.

fMRI measures how quickly oxygen
is consumed by brain cells.

Active areas of the brain use
oxygen more quickly.

So watching an fMRI scan while a person
completes cognitive or behavioral tasks

can provide information about which
regions of the brain might be involved.

That allows us to study everything
from how we see faces

to how we understand what we’re feeling.

fMRI can pinpoint differences in brain
activity to within a few millimeters,

but it’s thousands
of times slower than EEG.

Using the two techniques together

can help show when,
and where, neural activity is occurring.

The third, even more precise, technique
is called positron emission tomography

and it measures radioactive elements
introduced into the brain.

That sounds much scarier
than it actually is;

PET scans, like fMRI and EEG,
are completely safe.

During a PET scan, a small amount
of radioactive material called a tracer

is injected into the bloodstream,

and doctors monitor its
circulation through the brain.

By modifying the tracer
to bind to specific molecules,

researchers can use PET to study
the complex chemistry in our brains.

It’s useful for studying
how drugs affect the brain

and detecting diseases like Alzheimer’s.

But this technique has
the lowest time resolution of all

because it takes minutes for the tracer
to circulate and changes to show up.

These techniques collectively
help doctors and scientists

connect what happens in the
brain with our behavior.

But they’re also limited
by how much we still don’t know.

For example, let’s say researchers are
interested in studying how memory works.

After asking 50 participants to memorize
a series of images while in MRI scanners,

the researchers might analyze the results

and discover a number
of active brain regions.

Making a link between memory
and specific parts of the brain

is an important step forward.

But future research would be necessary

to better understand
what’s happening in each region,

how they work together,

and whether the activity is because
of their involvement in memory

or another process
occurring simultaneously.

More advanced imaging
and analysis technology

might one day provide
more accurate results

and even distinguish

the activity of individual neurons.

Until then, our brains will
keep measuring, analyzing, and innovating

in pursuit of that quest to understand

one of the most remarkable things
we’ve ever encountered.

据我们所知,

在我们的太阳系中,只有一件事
足够复杂,可以研究自己

:人脑。

但是这种自我调查
非常具有挑战性。

一个活的大脑
被厚厚的头骨保护着,

包裹在一层层的保护组织中

,由数十亿个微小的、
相互连接的细胞组成。

这就是为什么很难隔离、
观察和理解

像阿尔茨海默氏症这样的疾病。

那么我们如何在
不伤害主人的情况下研究活体大脑呢?

我们可以使用三种技术,
称为 EEG、

fMRI

和 PET。

每个衡量的东西都不同
,都有自己的长处和短处

,我们将依次研究。

首先是脑电图或脑电图,

它测量
你大脑中的电活动。

当脑细胞交流时,
它们会产生电波。

放置在头骨上的电极
接收这些波

,电极之间检测到的信号差异

提供了
有关正在发生的事情的信息。

这项技术发明于
近 100 年前

,至今仍用于
诊断癫痫和睡眠障碍等疾病。

它还用于研究

在学习或注意力期间大脑的哪些区域是活跃的。

EEG 是非侵入性的、

相对便宜

且快速:

它可以测量
在几毫秒内发生的变化。

不幸的是,很难

确定任何特定
模式的确切来源。

电信号
在整个大脑中不断产生

,它们相互作用
产生复杂的模式。

使用更多电极或复杂的
数据处理算法会有所帮助。

但最后,虽然 EEG 可以
准确地告诉你某些活动发生的时间,

但它不能准确地告诉你发生在哪里。

为此,您需要另一种技术,

例如功能性
磁共振成像或 fMRI。

fMRI 测量
脑细胞消耗氧气的速度。

大脑的活动区域
更快地使用氧气。

因此,在一个人
完成认知或行为任务时观看 fMRI 扫描

可以提供有关
可能涉及大脑哪些区域的信息。

这使我们能够研究
从我们如何看待面孔

到我们如何理解我们的感受的一切。

fMRI 可以将大脑
活动的差异精确到几毫米之内,

但它
比 EEG 慢数千倍。

一起使用这两种技术

可以帮助显示
神经活动发生的时间和地点。

第三种更精确的
技术称为正电子发射断层扫描

,它测量
引入大脑的放射性元素。

这听起来
比实际上要可怕得多。

PET 扫描,如 fMRI 和 EEG,
是完全安全的。

在 PET 扫描期间,将少量
称为示踪剂的放射性物质

注入血液

,医生监测其
在大脑中的循环。

通过修改示踪剂
以与特定分子结合,

研究人员可以使用 PET 研究
我们大脑中的复杂化学。

它对于研究
药物如何影响大脑

和检测阿尔茨海默氏症等疾病很有用。

但是这种技术
的时间分辨率是所有技术中最低的,

因为跟踪器需要几分钟
才能循环并显示变化。

这些技术共同
帮助医生和科学家

将大脑中发生的事情
与我们的行为联系起来。

但它们也
受到我们仍然不知道的程度的限制。

例如,假设研究人员有
兴趣研究记忆的工作原理。

在要求 50 名参与者
在 MRI 扫描仪中记住一系列图像后

,研究人员可能会分析结果

并发现
一些活跃的大脑区域。

在记忆
和大脑的特定部分之间建立联系

是向前迈出的重要一步。

但未来的研究将是必要的,

以更好地了解
每个区域正在发生的事情,

它们如何协同工作,

以及这些活动是
因为它们参与了记忆

还是
同时发生的另一个过程。

更先进的成像
和分析技术

有一天可能会提供
更准确的结果

,甚至可以区分

单个神经元的活动。

在那之前,我们的大脑将
继续测量、分析和创新

,以寻求理解

我们所遇到的最了不起的事情
之一。