How we can make crops survive without water Jill Farrant

I believe that the secret to producing
extremely drought-tolerant crops,

which should go some way
to providing food security in the world,

lies in resurrection plants,

pictured here, in an extremely
droughted state.

You might think
that these plants look dead,

but they’re not.

Give them water,

and they will resurrect, green up,
start growing, in 12 to 48 hours.

Now, why would I suggest

that producing drought-tolerant crops
will go towards providing food security?

Well, the current world population
is around 7 billion.

And it’s estimated that by 2050,

we’ll be between 9 and 10 billion people,

with the bulk of this growth
happening in Africa.

The food and agricultural
organizations of the world

have suggested that we need
a 70 percent increase

in current agricultural practice

to meet that demand.

Given that plants
are at the base of the food chain,

most of that’s going
to have to come from plants.

That percentage of 70 percent

does not take into consideration
the potential effects of climate change.

This is taken from a study by Dai
published in 2011,

where he took into consideration

all the potential effects
of climate change

and expressed them –
amongst other things –

increased aridity due to lack of rain
or infrequent rain.

The areas in red shown here,

are areas that until recently

have been very successfully
used for agriculture,

but cannot anymore
because of lack of rainfall.

This is the situation
that’s predicted to happen in 2050.

Much of Africa,
in fact, much of the world,

is going to be in trouble.

We’re going to have to think of some
very smart ways of producing food.

And preferably among them,
some drought-tolerant crops.

The other thing
to remember about Africa is

that most of their agriculture is rainfed.

Now, making drought-tolerant crops
is not the easiest thing in the world.

And the reason for this is water.

Water is essential to life on this planet.

All living, actively
metabolizing organisms,

from microbes to you and I,

are comprised predominately of water.

All life reactions happen in water.

And loss of a small amount
of water results in death.

You and I are 65 percent water –

we lose one percent of that, we die.

But we can make behavioral
changes to avoid that.

Plants can’t.

They’re stuck in the ground.

And so in the first instance they have
a little bit more water than us,

about 95 percent water,

and they can lose
a little bit more than us,

like 10 to about 70 percent,
depending on the species,

but for short periods only.

Most of them will either try
to resist or avoid water loss.

So extreme examples of resistors
can be found in succulents.

They tend to be small, very attractive,

but they hold onto their water
at such great cost

that they grow extremely slowly.

Examples of avoidance of water loss
are found in trees and shrubs.

They send down very deep roots,

mine subterranean water supplies

and just keep flushing
it through them at all times,

keeping themselves hydrated.

The one on the right is called a baobab.

It’s also called the upside-down tree,

simply because the proportion
of roots to shoots is so great

that it looks like the tree
has been planted upside down.

And of course the roots are required
for hydration of that plant.

And probably the most common strategy
of avoidance is found in annuals.

Annuals make up the bulk
of our plant food supplies.

Up the west coast of my country,

for much of the year
you don’t see much vegetation growth.

But come the spring rains, you get this:

flowering of the desert.

The strategy in annuals,

is to grow only in the rainy season.

At the end of that season
they produce a seed,

which is dry, eight to 10 percent water,

but very much alive.

And anything that is
that dry and still alive,

we call desiccation-tolerant.

In the desiccated state,

what seeds can do
is lie in extremes of environment

for prolonged periods of time.

The next time the rainy season comes,

they germinate and grow,

and the whole cycle just starts again.

It’s widely believed that the evolution
of desiccation-tolerant seeds

allowed the colonization and the radiation

of flowering plants,
or angiosperms, onto land.

But back to annuals
as our major form of food supplies.

Wheat, rice and maize form 95 percent
of our plant food supplies.

And it’s been a great strategy

because in a short space of time
you can produce a lot of seed.

Seeds are energy-rich
so there’s a lot of food calories,

you can store it in times of plenty
for times of famine,

but there’s a downside.

The vegetative tissues,

the roots and leaves of annuals,

do not have much

by way of inherent resistance,
avoidance or tolerance characteristics.

They just don’t need them.

They grow in the rainy season

and they’ve got a seed
to help them survive the rest of the year.

And so despite concerted
efforts in agriculture

to make crops with improved properties

of resistance, avoidance and tolerance –

particularly resistance and avoidance

because we’ve had good models
to understand how those work –

we still get images like this.

Maize crop in Africa,

two weeks without rain

and it’s dead.

There is a solution:

resurrection plants.

These plants can lose 95 percent
of their cellular water,

remain in a dry, dead-like state
for months to years,

and give them water,

they green up and start growing again.

Like seeds, these are
desiccation-tolerant.

Like seeds, these can withstand extremes
of environmental conditions.

And this is a really rare phenomenon.

There are only 135 flowering
plant species that can do this.

I’m going to show you a video

of the resurrection process
of these three species

in that order.

And at the bottom,

there’s a time axis
so you can see how quickly it happens.

(Applause)

Pretty amazing, huh?

So I’ve spent the last 21 years
trying to understand how they do this.

How do these plants dry without dying?

And I work on a variety
of different resurrection plants,

shown here in the hydrated and dry states,

for a number of reasons.

One of them is that each
of these plants serves as a model

for a crop that I’d like
to make drought-tolerant.

So on the extreme top left,
for example, is a grass,

it’s called Eragrostis nindensis,

it’s got a close relative
called Eragrostis tef –

a lot of you might know it as “teff” –

it’s a staple food in Ethiopia,

it’s gluten-free,

and it’s something we would like
to make drought-tolerant.

The other reason for looking
at a number of plants,

is that, at least initially,

I wanted to find out:
do they do the same thing?

Do they all use the same mechanisms

to be able to lose
all that water and not die?

So I undertook what we call
a systems biology approach

in order to get
a comprehensive understanding

of desiccation tolerance,

in which we look at everything

from the molecular to the whole plant,
ecophysiological level.

For example we look at things like

changes in the plant anatomy
as they dried out

and their ultrastructure.

We look at the transcriptome,
which is just a term for a technology

in which we look at the genes

that are switched on or off,
in response to drying.

Most genes will code for proteins,
so we look at the proteome.

What are the proteins made
in response to drying?

Some proteins would code for enzymes
which make metabolites,

so we look at the metabolome.

Now, this is important
because plants are stuck in the ground.

They use what I call
a highly tuned chemical arsenal

to protect themselves from all
the stresses of their environment.

So it’s important that we look

at the chemical changes
involved in drying.

And at the last study
that we do at the molecular level,

we look at the lipidome –

the lipid changes in response to drying.

And that’s also important

because all biological membranes
are made of lipids.

They’re held as membranes
because they’re in water.

Take away the water,
those membranes fall apart.

Lipids also act as signals
to turn on genes.

Then we use physiological
and biochemical studies

to try and understand
the function of the putative protectants

that we’ve actually discovered
in our other studies.

And then use all of that
to try and understand

how the plant copes
with its natural environment.

I’ve always had the philosophy that
I needed a comprehensive understanding

of the mechanisms of desiccation tolerance

in order to make a meaningful suggestion
for a biotic application.

I’m sure some of you are thinking,

“By biotic application,

does she mean she’s going to make
genetically modified crops?”

And the answer to that question is:

depends on your definition
of genetic modification.

All of the crops that we eat today,
wheat, rice and maize,

are highly genetically modified
from their ancestors,

but we don’t consider them GM

because they’re being produced
by conventional breeding.

If you mean, am I going to put
resurrection plant genes into crops,

your answer is yes.

In the essence of time,
we have tried that approach.

More appropriately,
some of my collaborators at UCT,

Jennifer Thomson, Suhail Rafudeen,

have spearheaded that approach

and I’m going to show you some data soon.

But we’re about to embark
upon an extremely ambitious approach,

in which we aim to turn on
whole suites of genes

that are already present in every crop.

They’re just never turned on
under extreme drought conditions.

I leave it up to you to decide

whether those should be called GM or not.

I’m going to now just give you
some of the data from that first approach.

And in order to do that

I have to explain a little bit
about how genes work.

So you probably all know

that genes are made
of double-stranded DNA.

It’s wound very tightly into chromosomes

that are present in every cell
of your body or in a plant’s body.

If you unwind that DNA, you get genes.

And each gene has a promoter,

which is just an on-off switch,

the gene coding region,

and then a terminator,

which indicates that this is the end
of this gene, the next gene will start.

Now, promoters are not
simple on-off switches.

They normally require
a lot of fine-tuning,

lots of things to be present and correct
before that gene is switched on.

So what’s typically done
in biotech studies

is that we use an inducible promoter,

we know how to switch it on.

We couple that to genes of interest

and put that into a plant
and see how the plant responds.

In the study that I’m going
to talk to you about,

my collaborators used
a drought-induced promoter,

which we discovered
in a resurrection plant.

The nice thing about this promoter
is that we do nothing.

The plant itself senses drought.

And we’ve used it to drive antioxidant
genes from resurrection plants.

Why antioxidant genes?

Well, all stresses,
particularly drought stress,

results in the formation of free radicals,

or reactive oxygen species,

which are highly damaging
and can cause crop death.

What antioxidants do is stop that damage.

So here’s some data from a maize strain
that’s very popularly used in Africa.

To the left of the arrow
are plants without the genes,

to the right –

plants with the antioxidant genes.

After three weeks without watering,

the ones with the genes
do a hell of a lot better.

Now to the final approach.

My research has shown
that there’s considerable similarity

in the mechanisms of desiccation tolerance
in seeds and resurrection plants.

So I ask the question,

are they using the same genes?

Or slightly differently phrased,

are resurrection plants using genes
evolved in seed desiccation tolerance

in their roots and leaves?

Have they retasked these seed genes

in roots and leaves
of resurrection plants?

And I answer that question,

as a consequence of a lot
of research from my group

and recent collaborations from a group
of Henk Hilhorst in the Netherlands,

Mel Oliver in the United States

and Julia Buitink in France.

The answer is yes,

that there is a core set of genes
that are involved in both.

And I’m going to illustrate this
very crudely for maize,

where the chromosomes below the off switch

represent all the genes that are required
for desiccation tolerance.

So as maize seeds dried out
at the end of their period of development,

they switch these genes on.

Resurrection plants
switch on the same genes

when they dry out.

All modern crops, therefore,

have these genes
in their roots and leaves,

they just never switch them on.

They only switch them on in seed tissues.

So what we’re trying to do right now

is to understand the environmental
and cellular signals

that switch on these genes
in resurrection plants,

to mimic the process in crops.

And just a final thought.

What we’re trying to do very rapidly

is to repeat what nature did
in the evolution of resurrection plants

some 10 to 40 million years ago.

My plants and I thank you
for your attention.

(Applause)

我相信,生产
极其耐旱的作物

的秘诀在于能够在一定程度上
保障世界粮食安全,其秘诀

在于

在极度
干旱的状态下复活植物,如图所示。

你可能
认为这些植物看起来已经死了,

但事实并非如此。

给它们喝水

,它们会
在 12 到 48 小时内复活、变绿、开始生长。

现在,为什么我会

建议生产耐旱作物
将有助于提供粮食安全?

那么,目前世界
人口大约是70亿。

据估计,到 2050 年,

我们将有 9 到 100 亿人,

其中大部分增长
发生在非洲。

世界粮食和农业

组织建议我们
需要将

当前的农业实践增加 70%

才能满足这一需求。

鉴于
植物位于食物链的底部,

其中
大部分必须来自植物。

这 70% 的百分比

没有考虑到
气候变化的潜在影响。

这取自戴
在 2011 年发表的一项研究,

其中他考虑

了气候变化的所有潜在影响,

并表达了它们——
除其他外——

由于缺乏降雨
或降雨稀少导致干旱加剧。

此处显示的红色

区域是直到

最近才非常成功地
用于农业的区域,


由于缺乏降雨而不再适用。

这是预计将在 2050 年发生的情况

。非洲的大部分地区
,事实上,世界的大部分地区,

都将陷入困境。

我们将不得不想出一些
非常聪明的方法来生产食物。

其中最好是
一些耐旱作物。

关于非洲要记住的另一件事是

,他们的大部分农业都是靠雨水灌溉的。

现在,制作耐旱
作物并不是世界上最容易的事情。

原因是水。

水对于这个星球上的生命至关重要。 从微生物到你我,

所有活的、积极
代谢的生物体

都主要由水组成。

所有的生命反应都发生在水中。

少量水分流失会
导致死亡。

你和我是 65% 的水——

我们失去其中的 1%,我们就死了。

但我们可以通过改变行为
来避免这种情况。

植物不能。

他们被困在地上。

因此,在第一个例子中,它们的
水分比我们多一点,

大约 95% 的水

,它们可能
比我们失去一点点,

比如 10% 到 70%,
具体取决于物种,

但仅限于短期。

他们中的大多数要么
试图抵抗或避免水分流失。

因此,
在多肉植物中可以找到电阻器的极端例子。

它们往往很小,非常有吸引力,

但它们
以如此高的成本保住了水,

以至于它们的生长极其缓慢。

在树木和灌木中发现了避免水分流失的例子。

它们向下扎根,

开采地下水源,

并一直
通过它们冲洗它,

保持自己的水分。

右边的那个叫做猴面包树。

又叫倒立树,

只是因为
根与芽的比例太大

了,看起来就像
倒立的树。

当然
,植物的水合作用需要根。

最常见
的回避策略可能是在年鉴中发现的。

一年生植物
占我们植物性食物供应的大部分。

在我国的西海岸,

一年中的大部分时间
你都看不到太多的植被生长。

但是春天的雨来了,你会得到这个:

沙漠开花。

一年生的策略

是只在雨季生长。

在那个季节结束时,
他们会产生一粒干燥的种子

,含有 8% 到 10% 的水分,

但非常有活力。

任何干燥但仍然活着的东西,

我们称之为耐干燥。

在干燥状态下

,种子所能做的
就是长时间处于极端环境

中。

下一次雨季来临时,

它们发芽生长

,整个循环又开始了。

人们普遍认为,
耐干燥种子的进化

允许

开花植物
或被子植物在陆地上定殖和辐射。

但回到一年生
作为我们主要的食物供应形式。

小麦、大米和玉米
占我们植物性食物供应的 95%。

这是一个很好的策略,

因为您可以在很短的时间
内产生大量种子。

种子能量丰富,
所以食物热量很多,

你可以在饥荒的时候储存它

但有一个缺点。 一年生植物

的营养组织,

即根和叶,

没有

太多固有的抗性、
回避或耐受特性。

他们只是不需要它们。

它们在雨季生长

,它们有一颗种子
可以帮助它们度过余下的一年。

因此,尽管
农业方面共同努力,

使作物具有更好

的抗性、回避性和耐受性——

尤其是抗性和回避性,

因为我们有很好的模型
来了解它们是如何工作的——

我们仍然得到这样的图像。

非洲的玉米作物,

两周没有下雨

,它已经死了。

有一个解决方案:

复活植物。

这些植物可能会失去 95
% 的细胞水,

在几个月到几年内保持干燥、死气沉沉的
状态,

然后给它们水分,

它们就会变绿并重新开始生长。

像种子一样,这些是
耐干燥的。

像种子一样,它们可以承受极端
的环境条件。

这是一个非常罕见的现象。

只有 135
种开花植物可以做到这一点。

我将按顺序向您展示

这三个物种的复活过程的视频

在底部,

有一个时间轴,
因此您可以看到它发生的速度。

(掌声)

很厉害吧?

所以在过去的 21 年里,我一直在
试图了解他们是如何做到这一点的。

这些植物如何干燥而不死亡?

由于多种原因,我研究了
各种不同的复活植物

,这里以水合和干燥状态显示

其中之一是这些植物中的每
一种都可以作为

我想让其耐旱的作物的模型

所以在最左上角,
例如,是一种草,

它叫做 Eragrostis nindensis,

它有一个近亲
叫做 Eragrostis

tef——你们很多人可能知道它是“teff”——

它是埃塞俄比亚的主食,

它是 不含麸质

,这是我们想让它耐旱的东西

查看许多植物的另一个原因

是,至少在最初,

我想知道:
它们做同样的事情吗?

他们是否都使用相同的机制

来失去
所有的水而不死?

因此,我采用了我们所谓
的系统生物学方法

,以全面

了解干燥耐受

性,我们研究

从分子到整个植物的
生态生理水平的一切。

例如,我们观察

植物
干枯时的解剖结构

及其超微结构的变化。

我们研究的是转录组,
它只是一种技术的术语,

在该技术中,我们观察基因

的开启或关闭,
以响应干燥。

大多数基因都会编码蛋白质,
所以我们看看蛋白质组。 干燥后

产生的蛋白质是什么

一些蛋白质会编码
产生代谢物的酶,

所以我们看看代谢组。

现在,这很重要,
因为植物卡在地下。

他们使用我
称之为高度调整的化学武器库

来保护自己免受
环境的所有压力。

因此,重要的是我们要研究干燥过程

中的化学变化

在我们在分子水平上进行的最后一项研究
中,

我们研究了脂质组

——脂质在干燥时会发生变化。

这也很重要,

因为所有生物膜
都是由脂质制成的。

因为它们在水中,所以它们被保持为膜。

把水拿走,
那些膜就会分崩离析。

脂质还充当
开启基因的信号。

然后我们使用生理
和生化研究

来尝试了解

我们在其他研究中实际发现的假定保护剂的功能。

然后利用所有这些
来尝试

了解植物如何
应对自然环境。

我一直有这样的理念,即
我需要全面了解

干燥耐受性机制,

以便为生物应用提出有意义的建议

我敢肯定你们中的一些人在想,

“通过生物应用

,她的意思是她要制造
转基因作物吗?”

这个问题的答案是:

取决于你
对基因改造的定义。

我们今天吃的所有作物,
小麦、大米和玉米,

都是
从它们的祖先那里高度转基因的,

但我们不认为它们是转基因的,

因为它们是
通过传统育种方式生产的。

如果你的意思是,我是否要将
复活植物基因植入农作物,

你的答案是肯定的。

在时间的本质上,
我们已经尝试过这种方法。

更恰当地说,
我在 UCT 的一些合作者

Jennifer Thomson、Suhail

Rafudeen 率先采用了这种方法

,我将很快向您展示一些数据。

但是我们即将
开始一个非常雄心勃勃的方法

,我们的目标是打开

已经存在于每一种作物中的一整套基因。

它们只是
在极端干旱条件下永远不会打开。

我让你来决定

是否应该将它们称为 GM。

我现在要给你
一些来自第一种方法的数据。

为了做到这一点,

我必须解释
一下基因是如何工作的。

所以你们可能都

知道基因是
由双链DNA组成的。

它非常紧密地缠绕

在存在于
您身体的每个细胞或植物体内的染色体中。

如果你解开那个 DNA,你就会得到基因。

并且每个基因都有一个启动子

,就是一个开关

,基因编码区,

然后是一个终止子

,表示这
是这个基因的结束,下一个基因将开始。

现在,发起人不是
简单的开关。

它们通常
需要大量的微调,在该基因被打开

之前需要存在很多东西并进行纠正

所以
在生物技术研究中通常做的

是我们使用诱导型启动子,

我们知道如何打开它。

我们将其与感兴趣的基因结合起来

,并将其放入植物中,
然后观察植物的反应。

在我将
要与您讨论的研究中,

我的合作者使用
了一种干旱诱导的启动子,

这是我们
在复活植物中发现的。

这个发起人的
好处是我们什么都不做。

植物本身感知干旱。

我们用它来驱动
复活植物的抗氧化基因。

为什么是抗氧化基因?

好吧,所有的压力,
尤其是干旱压力,都会

导致自由基

或活性氧的形成,

这些自由基具有很强的破坏性,
并可能导致作物死亡。

抗氧化剂所做的是阻止这种损害。

所以这里有一些来自
非洲非常普遍使用的玉米品种的数据。

箭头左边
是没有基因的植物

,右边

是有抗氧化基因的植物。

在没有浇水的三周后,

有基因
的人的表现要好得多。

现在到最后的方法。

我的研究
表明,

种子和复活植物的耐干燥机制有相当大的相似性。

所以我问这个问题

,他们使用相同的基因吗?

或者用稍微不同的措辞

,复活植物是否使用了根和叶
耐种子干燥能力进化的基因

他们是否

在复活植物的根和叶
中重新分配了这些种子基因?

我回答了这个问题,

因为
我的团队进行了大量研究,

并且最近与
荷兰的 Henk Hilhorst、

美国的 Mel Oliver

和法国的 Julia Buitink 合作。

答案是肯定的

,两者都有一组核心基因


将对玉米进行非常粗略的说明,

其中关闭开关下方的染色体

代表了耐干燥性所需的所有基因

因此,当玉米种子
在发育结束时变干时,

它们会打开这些基因。 当它们变干时,

复活的植物会
开启相同的基因

因此,所有现代作物

的根和叶中都有这些基因,

它们只是从不打开它们。

他们只在种子组织中打开它们。

所以我们现在要做的

是了解在植物中激活这些基因的环境
和细胞

信号,

以模拟农作物的过程。

只是最后的想法。

我们正在快速尝试做的

是重复大约 10 到 4000 万年前大自然
在复活植物进化过程中所做的事情

我和我的植物
感谢您的关注。

(掌声)