When is water safe to drink Mia Nacamulli

Take a look at the water in this glass.

Refreshing, hydrating, and invaluable
to your survival.

Before you take a sip, though,

how do you know that the water inside
is free from disease-causing organisms

and pollutants?

One out of ten people in the world
can’t actually be sure

that their water is clean
and safe to drink.

Why is that?

Inadequate sanitation,

poor protection of drinking water sources,

and improper hygiene

often lead to sewage
and feces-contaminated water.

That’s the ideal breeding ground
for dangerous bacteria,

viruses,

and parasites.

And the effects of these pathogens
are staggering.

Diarrheal disease from unsafe water is one
of the leading causes of death

around the world for children under five.

And according to a U.N. report from 2010,

microbial water-borne illnesses killed
more people per year than war.

Proper treatment processes, though,
can address these threats.

They usually have three parts:

sedimentation,

filtration,

and disinfection.

Once water has been collected
in a treatment facility,

it’s ready for cleaning.

The first step, sedimentation,
just takes time.

The water sits undisturbed, allowing
heavier particles to sink to the bottom.

Often, though, particles
are just too small

to be removed by sedimentation alone

and need to be filtered.

Gravity pulls the water downward through
layers of sand

that catch leftover particles
in their pores,

prepping the water
for its final treatment,

a dose of disinfectant.

Chemicals, primarily forms
of chlorine and ozone,

are mixed in to kill off any pathogens

and to disinfect pipes
and storage systems.

Chlorine is highly effective in destroying
water’s living organisms,

but its use remains government-regulated

because it has potentially harmful
chemical byproducts.

And if an imbalance of chlorine occurs
during the disinfection process,

it can trigger other chemical reactions.

For example,
levels of chlorine byproducts,

like trihalomethanes, could skyrocket,
leading to pipe corrosion

and the release of iron, copper,
and lead into drinking water.

Water contamination from these
and other sources

including leaching,

chemical spills,

and runoffs,

has been linked
to long-term health effects,

like cancer,

cardiovascular and neurological diseases,

and miscarriage.

Unfortunately, analyzing the exact risks

of chemically contaminated
water is difficult.

So while it’s clear that disinfectants
make us safer

by removing disease-causing pathogens,

experts have yet
to determine the full scope

of how the chemical cocktail
in our drinking water

really impacts human health.

So how can you tell whether the water
you have access to,

whether from a tap or otherwise,

is drinkable?

Firstly, too much turbidity,

trace organic compounds,

or high-density heavy metals like arsenic,
chromium, or lead,

mean that the water
is unsuitable for consumption.

A lot of contaminants,
like lead or arsenic,

won’t be obvious without tests,

but some clues, like cloudiness,

brown or yellow coloration,

a foul odor,

or an excessive chlorine smell

can indicate the need
to investigate further.

Water testing kits can go a step further

and confirm the presence of many different
contaminants and chemicals.

With many types of contamination,

there are ways of treating water where
it’s used instead of close to its source.

Point-of-use treatment has actually
been around for thousands of years.

Ancient Egyptians boiled away many
organic contaminants with the sun’s heat.

And in Ancient Greece, Hippocrates
designed a bag

that trapped bad tasting
sediments from water.

Today, point-of-use processes usually
involve ionization

to lower mineral content.

They also use adsorption filtration,

where a porous material
called activated carbon

strains the water to remove contaminants
and chemical byproducts.

While it’s not always an effective
long-term solution,

point-of-use treatment is portable,
easy to install, and adaptable.

And in regions where large-scale
systems are unavailable,

or where water has been contaminated
further along its journey,

these systems can mean the difference
between life and death.

Clean water remains a precious
and often scarce commodity.

There are nearly 800 million of us who
still don’t have regular access to it.

The good news is that continued
developments in water treatment,

both on a large and small scale,

can alleviate a lot of unsafe conditions.

Implementing proper systems where
they’re needed

and paying careful attention
to the ones already in place

will fulfill one of the most basic
of our human needs.

看看这个杯子里的水。

清爽,补水,
对您的生存非常宝贵。

但是,在你喝一口之前,你

怎么知道里面的水
没有致病微生物

和污染物?

世界上十分之一的人
实际上不能

确定他们的水是干净的
并且可以安全饮用。

这是为什么?

卫生设施不足、

饮用水水源保护不力、

卫生不当

常常导致污水
和粪便污染水。


是危险细菌、

病毒

和寄生虫的理想滋生地。

这些病原体的影响
是惊人的。

不安全的水引起的腹泻病是

全球五岁以下儿童死亡的主要原因之一。

根据联合国 2010 年的一份报告,

微生物水传播疾病每年造成的死亡
人数比战争还多。

但是,适当的治疗过程
可以解决这些威胁。

它们通常有三个部分:

沉淀、

过滤

和消毒。

一旦
在处理设施中收集了水,

就可以进行清洁了。

第一步,沉淀,
只是需要时间。

水不受干扰,使
较重的颗粒沉入底部。

但是,通常
颗粒太小

而无法单独通过沉降去除

,需要过滤。

重力通过沙层将水向下拉
,沙层会在孔隙

中捕获剩余的颗粒

为水
做最后的处理,即

一剂消毒剂。

化学物质,主要
是氯和臭氧的形式,

被混入以杀死任何病原体

并对管道
和存储系统进行消毒。

氯在破坏
水中的生物体方面非常有效,

但它的使用仍受政府监管,

因为它具有潜在的有害
化学副产品。

如果
在消毒过程中出现氯失衡,

它会引发其他化学反应。

例如,
氯副产物(

如三卤甲烷)的含量可能会飙升,
导致管道腐蚀

以及铁、铜
和铅释放到饮用水中。

来自这些
和其他来源的水污染,

包括浸出、

化学品泄漏

和径流,

与癌症、

心血管和神经系统疾病

以及流产等长期健康影响有关。

不幸的是,分析

化学污染
水的确切风险是困难的。

因此,虽然很明显,消毒剂

通过去除致病病原体使我们更安全,但

专家们
尚未确定我们饮用水中

的化学混合物如何

真正影响人类健康的全部范围。

那么,您如何判断
您可以使用的水(

无论是来自水龙头还是其他方式)

是否可以饮用?

首先,过多的浊度、

微量有机化合物

或高密度重金属如砷、
铬或铅,

意味着水
不适合饮用。

许多污染物,
如铅或砷,

未经测试不会很明显,

但一些线索,如混浊、

棕色或黄色

、恶臭

或过多的氯气味

可能表明需要
进一步调查。

水质检测试剂盒可以更进一步

,确认存在许多不同的
污染物和化学物质。

对于许多类型的污染,

有一些方法
可以在使用水的地方而不是靠近水源处处理水。

使用点处理实际上
已经存在了数千年。

古埃及人
用太阳的热量煮沸了许多有机污染物。

在古希腊,希波克拉底
设计了一个袋子

,用来收集水中难闻的
沉淀物。

今天,使用点工艺通常
涉及电离

以降低矿物质含量。

他们还使用吸附过滤

,一种
称为

活性炭的多孔材料过滤水以去除污染物
和化学副产物。

虽然它并不总是一种有效
的长期解决方案,但

使用点处理具有便携、
易于安装和适应性强的特点。


没有大规模系统的地区,

或者水在其旅程中被进一步污染的地区

这些系统可能意味着
生与死的区别。

清洁水仍然是一种珍贵
且往往稀缺的商品。

我们中有近 8 亿人
仍然无法定期访问它。

好消息是,
水处理的持续发展,

无论是大规模还是小规模,

都可以缓解许多不安全的情况。 在需要的

地方实施适当的系统

并仔细关注
已经到位的系统

将满足
我们人类最基本的需求之一。