Why does ice float in water George Zaidan and Charles Morton

Water is the liquid of life.

We drink it,

we bathe in it,

we farm,

cook,

and clean with it.

It’s the most abundant molecule in our bodies.

In fact, every life form we know of

would die without it.

But most importantly, without water,

we wouldn’t have

iced tea.

Mmmm, iced tea.

Why do these ice cubes float?

If these were cubes of solid argon

in a cup of liquid argon,

they would sink.

And the same goes for most other substances.

But solid water, a.k.a. ice,

is somehow less dense than liquid water.

How’s that possible?

You already know that every water molecule

is made up of two hydrogen atoms

bonded to one oxygen atom.

Let’s look at a few of the molecules

in a drop of water,

and let’s say the temperature is 25 degrees Celcius.

The molecules are bending,

stretching,

spinning,

and moving through space.

Now, let’s lower the temperature,

which will reduce the amount of kinetic energy

each of these molecules has

so they’ll bend, stretch, spin, and move less.

And that means that on average,

they’ll take up less space.

Now, you’d think that as the liquid water

starts to freeze,

the molecules would just pack together

more and more closely,

but that’s not what happens.

Water has a special kind

of interaction between molecules

that most other substances don’t have,

and it’s called a hydrogen bond.

Now, remember that in a covalent bond

two electrons are shared,

usually unequally,

between atoms.

In a hydrogen bond,

a hydrogen atom is shared, also unequally,

between atoms.

One hydrogen bond looks like this.

Two look like this.

Here’s three

and four

and five,

six,

seven,

eight,

nine,

ten,

eleven,

twelve,

I could go on.

In a single drop of water,

hydrogen bonds form extended networks

between hundreds, thousands, millions,

billions, trillions of molecules,

and these bonds are constantly breaking and reforming.

Now, back to our water as it cools down.

Above 4 degrees Celcius,

the kinetic energy of the water molecules

keeps their interactions with each other short.

Hydrogen bonds form and break

like high school relationships,

that is to say, quickly.

But below 4 degrees,

the kinetic energy of the water molecules

starts to fall below the energy

of the hydrogen bonds.

So, hydrogen bonds form much more frequently

than they break

and beautiful structures start to emerge

from the chaos.

This is what solid water, ice,

looks like on the molecular level.

Notice that the ordered, hexagonal structure

is less dense than the disordered structure

of liquid water.

And you know that if an object is less dense

than the fluid it’s in,

it will float.

So, ice floats on water,

so what?

Well, let’s consider a world without floating ice.

The coldest part of the ocean

would be the pitch-black ocean floor,

once frozen, always frozen.

Forget lobster rolls

since crustaceans would lose their habitats,

or sushi since kelp forests wouldn’t grow.

What would Canadian kids do in winter

without pond hockey or ice fishing?

And forget James Cameron’s Oscar

because the Titanic totally would have made it.

Say goodbye to the white polar ice caps

reflecting sunlight

that would otherwise bake the planet.

In fact, forget the oceans as we know them,

which at over 70% of the Earth’s surface area,

regulate the atmosphere of the whole planet.

But worst of all,

there would be no iced tea.

Mmmmm, iced tea.

水是生命的液体。

我们喝它,

我们用它洗澡,

我们种地,

做饭

,用它打扫卫生。

它是我们体内最丰富的分子。

事实上,我们所知道的每一种生命形式,

如果没有它,都会死去。

但最重要的是,没有水,

我们就没有

冰茶。

嗯,冰茶。

为什么这些冰块会漂浮?

如果这些是

在一杯液态氩中的固体氩立方体,

它们会下沉。

大多数其他物质也是如此。

但是固态水,也就是冰,

在某种程度上比液态水的密度小。

这怎么可能?

你已经知道每个水分子

都是由两个氢

原子与一个氧原子结合而成的。

让我们看看一滴水中的一些分子

,假设温度是 25 摄氏度。

分子在空间中弯曲、

拉伸、

旋转

和移动。

现在,让我们降低温度,

这将减少

每个分子所具有的动能,

因此它们将弯曲、拉伸、旋转和移动更少。

这意味着平均而言,

它们将占用更少的空间。

现在,你会认为随着液态水

开始结冰

,分子会

越来越紧密地聚集在一起,

但事实并非如此。

在分子之间具有

大多数其他物质所没有的特殊相互作用

,称为氢键。

现在,请记住,在共价键中,原子

之间通常不相等地共享两个电子

在氢键中

,氢原子在原子之间共享,也是不平等的

一个氢键看起来像这样。

两个是这样的。

这是

三四和五六七

八九

九十

十一十一

十二,

我可以继续。

在一滴水中,

氢键

在数百、数千、数百万、

数十亿、数万亿个分子之间形成扩展网络

,这些键不断断裂和重组。

现在,当它冷却下来时,回到我们的水。

在 4 摄氏度以上,

水分子的动

能使它们之间的相互作用保持短暂。

氢键的形成和断裂

就像高中关系一样,

也就是说,很快。

但低于 4 度时,

水分子的动能

开始低于

氢键的能量。

因此,氢键形成的频率

比它们断裂的频率高得多

,美丽的结构开始

从混乱中浮现。

这就是固体水、冰

在分子水平上的样子。

请注意,有序六边形结构

的密度低于液态水的无序

结构。

你知道,如果一个物体的密度

低于它所在的流体,

它就会漂浮。

那么,冰漂浮在水面上,

那又怎样?

好吧,让我们考虑一个没有浮冰的世界。

海洋中最冷的部分

将是漆黑的海底,

曾经结冰,永远结冰。

忘记龙虾卷,

因为甲壳类动物会失去它们的栖息地,

或者寿司,因为海带森林不会生长。

如果

没有池塘曲棍球或冰钓,加拿大孩子在冬天会做什么?

忘记詹姆斯卡梅隆的奥斯卡,

因为泰坦尼克号完全可以做到。

告别反射阳光的白色极地冰盖

,否则它们会烘烤地球。

事实上,忘记我们所知道的海洋吧,海洋

占地球表面积的 70% 以上,

调节着整个星球的大气。

但最糟糕的

是,没有冰茶。

嗯,冰茶。