What is the Heisenberg Uncertainty Principle Chad Orzel

The Heisenberg Uncertainty Principle
is one of a handful of ideas

from quantum physics to
expand into general pop culture.

It says that you can never simultaneously
know the exact position

and the exact speed of an object
and shows up as a metaphor in everything

from literary criticism
to sports commentary.

Uncertainty is often explained as a result
of measurement,

that the act of measuring an object’s
position changes its speed, or vice versa.

The real origin is much deeper
and more amazing.

The Uncertainty Principle exists
because everything in the universe

behaves like both a particle and a wave
at the same time.

In quantum mechanics, the exact position
and exact speed of an object

have no meaning.

To understand this,

we need to think about what it means
to behave like a particle or a wave.

Particles, by definition, exist in
a single place at any instant in time.

We can represent this by a graph
showing the probability of finding

the object at a particular place,
which looks like a spike,

100% at one specific position,
and zero everywhere else.

Waves, on the other hand,
are disturbances spread out in space,

like ripples covering
the surface of a pond.

We can clearly identify features
of the wave pattern as a whole,

most importantly, its wavelength,

which is the distance between two
neighboring peaks,

or two neighboring valleys.

But we can’t assign it a single position.

It has a good probability of
being in lots of different places.

Wavelength is essential for
quantum physics

because an object’s wavelength
is related to its momentum,

mass times velocity.

A fast-moving object has lots of momentum,

which corresponds to
a very short wavelength.

A heavy object has lots of momentum
even if it’s not moving very fast,

which again means a very short wavelength.

This is why we don’t notice
the wave nature of everyday objects.

If you toss a baseball up in the air,

its wavelength is a billionth of a
trillionth of a trillionth of a meter,

far too tiny to ever detect.

Small things,
like atoms or electrons though,

can have wavelengths big enough
to measure in physics experiments.

So, if we have a pure wave,
we can measure its wavelength,

and thus its momentum,
but it has no position.

We can know a particles position
very well,

but it doesn’t have a wavelength,
so we don’t know its momentum.

To get a particle with both position
and momentum,

we need to mix the two pictures

to make a graph that has waves,
but only in a small area.

How can we do this?

By combining waves
with different wavelengths,

which means giving our quantum object some
possibility of having different momenta.

When we add two waves,
we find that there are places

where the peaks line up,
making a bigger wave,

and other places where the peaks of one
fill in the valleys of the other.

The result has regions where
we see waves

separated by regions of nothing at all.

If we add a third wave,

the regions where the waves cancel out
get bigger,

a fourth and they get bigger still,
with the wavier regions becoming narrower.

If we keep adding waves,
we can make a wave packet

with a clear wavelength
in one small region.

That’s a quantum object with both
wave and particle nature,

but to accomplish this,
we had to lose certainty

about both position and momentum.

The positions isn’t restricted
to a single point.

There’s a good probability
of finding it within some range

of the center of the wave packet,

and we made the wave packet
by adding lots of waves,

which means there’s
some probability of finding it

with the momentum corresponding
to any one of those.

Both position and momentum
are now uncertain,

and the uncertainties are connected.

If you want to reduce
the position uncertainty

by making a smaller wave packet,
you need to add more waves,

which means a bigger momentum uncertainty.

If you want to know the momentum better,
you need a bigger wave packet,

which means a bigger position uncertainty.

That’s the Heisenberg Uncertainty Principle,

first stated by German physicist
Werner Heisenberg back in 1927.

This uncertainty isn’t a matter
of measuring well or badly,

but an inevitable result
of combining particle and wave nature.

The Uncertainty Principle isn’t just
a practical limit on measurment.

It’s a limit on what properties
an object can have,

built into the fundamental structure
of the universe itself.

海森堡不确定性原理

从量子物理学
扩展到一般流行文化的少数想法之一。

它说你永远不可能同时
知道一个物体的确切位置

和确切的速度,
并且在从文学评论到体育评论的所有事物中都以隐喻的形式出现

不确定性通常被解释为测量的结果

即测量物体位置的行为会
改变其速度,反之亦然。

真正的渊源
更深更惊人。

不确定性原理的存在
是因为宇宙中的一切都

同时表现得既像粒子又像波

在量子力学中,物体的准确位置
和准确速度是

没有意义的。

为了理解这一点,

我们需要思考
像粒子或波一样的行为意味着什么。

根据定义,粒子
在任何时刻都存在于一个地方。

我们可以用一张图表来表示这一点,该图表
显示

在特定位置找到对象的概率
,看起来像一个尖峰,

在一个特定位置 100%,
而在其他任何地方都为零。

另一方面,波浪
是在空间中散布的扰动,

就像
覆盖池塘表面的涟漪。

我们可以清楚地识别
出整个波形的特征,

最重要的是它的波长,

即两个
相邻波峰

或两个相邻波谷之间的距离。

但是我们不能给它分配一个位置。

它很有可能
出现在许多不同的地方。

波长对于量子物理学至关重要,

因为物体的
波长与其动量、

质量乘以速度有关。

一个快速移动的物体有很多动量

,对应
的波长很短。

重物体
即使移动速度不是很快,

也有很大的动量,这再次意味着波长很短。

这就是为什么我们没有注意到
日常物体的波动性。

如果你把棒球扔到空中,

它的波长是一米的十亿分之一万亿分之一

太小了,无法探测到。

不过,像原子或电子这样的小东西,

其波长可以大到足以
在物理实验中进行测量。

所以,如果我们有一个纯波,
我们可以测量它的波长

,从而测量它的动量,
但它没有位置。

我们可以很好地知道一个粒子的位置

但它没有波长,
所以我们不知道它的动量。

为了得到一个同时具有位置
和动量的粒子,

我们需要将这两张图片混合

起来制作一个有波的图形,
但只在一个小区域内。

我们应该怎么做?

通过组合
不同波长的波,

这意味着给我们的量子物体一些
具有不同动量的可能性。

当我们添加两个波时,
我们会发现有些

地方的波峰排成一列,
形成一个更大的波,

而另一些地方的波峰
填满了另一个波谷。

结果有一些区域,
我们看到波

被完全没有的区域隔开。

如果我们添加第三个波浪

,波浪抵消的区域
会变得更大

,第四个,它们会变得更大
,波浪形区域变得更窄。

如果我们不断地添加波,
我们可以在一个小区域内制作一个波长清晰的波包

那是一个具有
波和粒子性质的量子物体,

但要做到这一点,
我们必须失去

对位置和动量的确定性。

位置不限
于单个点。

很有可能

在波包中心的某个范围内找到它

,我们
通过添加大量波来制作波包,

这意味着有
一定的概率找到

与其中
任何一个相对应的动量。

现在位置和动量
都不确定,

并且不确定性是相互关联的。

如果要

通过制作更小的波包来减少位置不确定性,
则需要添加更多的波,

这意味着更大的动量不确定性。

如果你想更好地了解动量,
你需要更大的波包,

这意味着更大的位置不确定性。

这就是海森堡不确定性原理,

最早由德国物理学家
维尔纳·海森堡于 1927 年提出。

这种不确定性不是
衡量好坏的问题,

而是
结合粒子和波动性质的必然结果。

不确定性原则不仅仅是
对测量的实际限制。

这是
一个对象可以具有的属性的限制,

内置于宇宙本身的基本结构
中。