Is the weather actually becoming more extreme R. Saravanan

From 2016 to 2019,

meteorologists saw record-breaking
heat waves around the globe,

rampant wildfires
in California and Australia,

and the longest run
of category 5 tropical cyclones on record.

The number of extreme weather events
has been increasing for the last 40 years,

and current predictions suggest
that trend will continue.

But are these natural disasters
simply bad weather?

Or are they due to our changing climate?

To answer this question

we need to understand the differences
between weather and climate—

what they are, how we predict them,
and what those predictions can tell us.

Meteorologists define weather
as the conditions of the atmosphere

at a particular time and place.

Currently, researchers can predict
a region’s weather for the next week

with roughly 80% accuracy.

Climate describes a region’s
average atmospheric conditions

over periods of a month or more.

Climate predictions can forecast
average temperatures for decades to come,

but they can’t tell us what specific
weather events to expect.

These two types of predictions
give us such different information

because they’re based on different data.

To forecast weather,

meteorologists need to measure
the atmosphere’s initial conditions.

These are the current levels
of precipitation, air pressure, humidity,

wind speed and wind direction
that determine a region’s weather.

Twice every day, meteorologists
from over 800 stations around the globe

release balloons into the atmosphere.

These balloons carry instruments
called radiosondes,

which measure initial conditions

and transmit their findings
to international weather centers.

Meteorologists then run the data
through predictive physics models

that generate the final weather forecast.

Unfortunately, there’s something stopping
this global web of data

from producing a perfect prediction:

weather is a fundamentally
chaotic system.

This means it’s incredibly sensitive
and impossible to perfectly forecast

without absolute knowledge
of all the system’s elements.

In a period of just ten days,

even incredibly small disturbances can
massively impact atmospheric conditions—

making it impossible to reliably
predict weather beyond two weeks.

Climate prediction, on the other hand,
is far less turbulent.

This is partly because a region’s climate
is, by definition,

the average of all its weather data.

But also because climate forecasts ignore

what’s currently happening
in the atmosphere,

and focus on the range
of what could happen.

These parameters are known
as boundary conditions,

and as their name suggests, they act
as constraints on climate and weather.

One example of a boundary condition
is solar radiation.

By analyzing the precise distance
and angle between a location and the sun,

we can determine the amount of heat
that area will receive.

And since we know how the sun
behaves throughout the year,

we can accurately predict
its effects on temperature.

Averaged across years of data,

this reveals periodic patterns,
including seasons.

Most boundary conditions have well-defined
values that change slowly, if at all.

This allows researchers to reliably
predict climate years into the future.

But here’s where it gets tricky.

Even the slightest change
in these boundary conditions

represents a much larger shift
for the chaotic weather system.

For example, Earth’s surface temperature
has warmed by almost 1 degree Celsius

over the last 150 years.

This might seem like a minor shift,

but this 1-degree change
has added the energy equivalent

of roughly one million
nuclear warheads into the atmosphere.

This massive surge of energy
has already led to a dramatic increase

in the number of heatwaves,
droughts, and storm surges.

So, is the increase in extreme weather
due to random chance, or changing climate?

The answer is that—

while weather will always
be a chaotic system—

shifts in our climate do increase
the likelihood of extreme weather events.

Scientists are in near universal agreement
that our climate is changing

and that human activity
is accelerating those changes.

But fortunately,

we can identify what human behaviors
are impacting the climate most

by tracking which boundary conditions
are shifting.

So even though next month’s weather
might always be a mystery,

we can work together to protect
the climate for centuries to come.

从 2016 年到 2019 年,

气象学家在全球范围内看到了破纪录的
热浪

,加利福尼亚和澳大利亚的野火肆虐,

以及有记录以来持续时间最长
的 5 类热带气旋。

过去 40 年来,极端天气事件的数量一直在增加

,目前的预测表明
这种趋势将继续下去。

但这些自然灾害
仅仅是恶劣的天气吗?

还是因为我们不断变化的气候?

要回答这个问题,

我们需要了解
天气和气候之间的区别——

它们是什么,我们如何预测它们,
以及这些预测能告诉我们什么。

气象学家将天气定义

特定时间和地点的大气状况。

目前,研究人员可以预测
一个地区下周的天气,

准确率约为 80%。

气候描述了一个地区

在一个月或更长时间内的平均大气状况。

气候预测可以预测
未来几十年的平均温度,

但它们无法告诉我们
预期会发生哪些具体天气事件。

这两种类型的预测
为我们提供了如此不同的信息,

因为它们基于不同的数据。

为了预测天气,

气象学家需要
测量大气的初始条件。

这些是决定一个地区天气的当前
降水、气压、湿度、

风速和风向水平

每天两次,
来自全球 800 多个气象站的气象学家

将气球释放到大气中。

这些气球携带
称为无线电探空仪的仪器

,可测量初始条件

并将其发现传输
到国际气象中心。

然后,气象学家
通过预测物理模型运行数据

,生成最终天气预报。

不幸的是,有些东西阻止了
这个全球数据网络

产生完美的预测:

天气从根本上来说是一个
混乱的系统。

这意味着如果没有对所有系统元素的绝对知识,它是非常敏感
且不可能完美预测

的。

在短短十天的时间里,

即使是非常小的扰动
也会对大气条件产生巨大影响——

因此无法可靠地
预测超过两周的天气。

另一方面,气候预测
远没有那么动荡。

部分原因
是,根据定义,一个地区的气候是

其所有天气数据的平均值。

但也因为气候预测忽略

了大气中目前正在发生的事情

而是关注
可能发生的事情的范围。

这些参数被
称为边界条件,

顾名思义,它们
充当气候和天气的约束条件。

边界条件的一个例子
是太阳辐射。

通过分析
某个位置与太阳之间的精确距离和角度,

我们可以确定
该区域将接收的热量。

而且由于我们知道太阳
全年的表现,

我们可以准确地预测
它对温度的影响。

对多年的数据进行平均,

这揭示了
包括季节在内的周期性模式。

大多数边界条件都有明确定义的
值,这些值变化缓慢,如果有的话。

这使研究人员能够可靠地
预测未来几年的气候。

但这就是棘手的地方。

即使这些边界条件的最轻微变化也

代表
了混乱天气系统的更大转变。

例如,地球表面温度在过去 150 年
中升高了近 1 摄氏度

这似乎是一个微小的转变,

但这一 1 度的变化
已将

大约 100
万枚核弹头的能量等效于大气中。

这种巨大的能量
激增已经导致

热浪、
干旱和风暴潮的数量急剧增加。

那么,极端天气的
增加是随机的,还是气候变化造成的?

答案是——

虽然天气永远
是一个混乱的系统——但

我们气候的变化确实增加
了极端天气事件发生的可能性。

科学家们几乎普遍
同意我们的气候正在发生变化

,而人类活动
正在加速这些变化。

但幸运的是,

我们可以通过跟踪哪些边界条件正在发生变化来确定哪些人类行为
对气候影响最大

因此,尽管下个月的天气
可能永远是个谜,

但我们可以共同努力保护
未来几个世纪的气候。