Why are manhole covers round Marc Chamberland

Why are most manhole covers round?

Sure, it makes them easy to roll
and slide into place in any alignment

but there’s another more compelling reason

involving a peculiar geometric property
of circles and other shapes.

Imagine a square
separating two parallel lines.

As it rotates, the lines first push apart,
then come back together.

But try this with a circle

and the lines stay
exactly the same distance apart,

the diameter of the circle.

This makes the circle unlike the square,

a mathematical shape
called a curve of constant width.

Another shape with this property
is the Reuleaux triangle.

To create one,
start with an equilateral triangle,

then make one of the vertices the center
of a circle that touches the other two.

Draw two more circles in the same way,
centered on the other two vertices,

and there it is, in the space
where they all overlap.

Because Reuleaux triangles can rotate
between parallel lines

without changing their distance,

they can work as wheels,
provided a little creative engineering.

And if you rotate one while rolling
its midpoint in a nearly circular path,

its perimeter traces out a square
with rounded corners,

allowing triangular drill bits
to carve out square holes.

Any polygon with an odd number of sides

can be used to generate
a curve of constant width

using the same method we applied earlier,

though there are many others
that aren’t made in this way.

For example, if you roll any
curve of constant width around another,

you’ll make a third one.

This collection of pointy curves
fascinates mathematicians.

They’ve given us Barbier’s theorem,

which says that the perimeter
of any curve of constant width,

not just a circle,
equals pi times the diameter.

Another theorem tells us that if you had
a bunch of curves of constant width

with the same width,

they would all have the same perimeter,

but the Reuleaux triangle
would have the smallest area.

The circle, which is effectively
a Reuleaux polygon

with an infinite number of sides,
has the largest.

In three dimensions, we can make
surfaces of constant width,

like the Reuleaux tetrahedron,

formed by taking a tetrahedron,

expanding a sphere from each vertex
until it touches the opposite vertices,

and throwing everything away
except the region where they overlap.

Surfaces of constant width

maintain a constant distance
between two parallel planes.

So you could throw a bunch
of Reuleaux tetrahedra on the floor,

and slide a board across them
as smoothly as if they were marbles.

Now back to manhole covers.

A square manhole cover’s short edge

could line up with the wider part
of the hole and fall right in.

But a curve of constant width
won’t fall in any orientation.

Usually they’re circular,
but keep your eyes open,

and you just might come across
a Reuleaux triangle manhole.

为什么大多数井盖都是圆形的?

当然,它使它们很容易
以任何对齐方式滚动和滑入到位,

但还有另一个更令人信服的原因

涉及
圆形和其他形状的特殊几何特性。

想象一个正方形
分隔两条平行线。

当它旋转时,这些线首先分开,
然后又合在一起。

但是用一个圆圈试试这个

,线条之间
的距离完全相同

,即圆圈的直径。

这使得圆形与正方形不同,正方形是

一种
称为等宽曲线的数学形状。

具有此属性的另一个形状
是鲁洛三角形。

要创建一个,
从一个等边三角形开始,

然后将其中一个顶点作为
与另外两个顶点相接触的圆的中心。

以同样的方式再画两个圆,
以另外两个顶点为中心

,在它们都重叠的空间
中。

因为鲁洛三角形可以
在平行线之间旋转

而不改变它们的距离,

所以它们可以像轮子一样工作,
提供一点创造性的工程。

如果您在旋转其中点的同时
以近乎圆形的路径滚动其中点,则

其周边会勾勒出一个
带圆角的正方形,

从而使三角形钻头
可以雕刻出方孔。

任何具有奇数边的多边形

都可以使用

我们之前应用的相同方法生成等宽的曲线,

尽管还有许多其他
的不是以这种方式制作的。

例如,如果您将任何
宽度恒定的曲线围绕另一条曲线滚动,

您将制作第三条曲线。

这组尖锐的曲线
令数学家着迷。

他们给了我们巴比尔定理,

它说
任何等宽曲线的周长,

而不仅仅是一个圆,
等于 pi 乘以直径。

另一个定理告诉我们,如果你有
一堆

宽度相同且宽度相同的曲线,

它们的周长都相同,

但鲁洛
三角形的面积最小。

圆实际上是
一个边数无限的 Reuleaux 多边形


它的最大。

在三个维度上,我们可以制作
宽度恒定的曲面,

例如 Reuleaux 四面体,

通过取一个四面体,

从每个顶点扩展一个球体
直到它接触到相反的顶点,

然后将所有东西都扔掉,
除了它们重叠的区域。

恒定宽度的表面

在两个平行平面之间保持恒定距离。

所以你可以把
一堆鲁洛四面体扔在地板上,

然后
像弹珠一样平滑地滑过它们。

现在回到井盖。

方形井盖的短边

可以与孔的较宽
部分对齐并直接落入。

但恒定宽度的曲线
不会在任何方向上落下。

通常它们是圆形的,
但请睁大眼睛

,您可能会
遇到鲁洛三角形沙井。