Whats the difference between accuracy and precision Matt Anticole

As the story goes,
the legendary marksman William Tell

was forced into a cruel challenge
by a corrupt lord.

William’s son was to be executed

unless William could shoot
an apple off his head.

William succeeded, but let’s imagine
two variations on the tale.

In the first variation,

the lord hires a bandit to steal
William’s trusty crossbow,

so he is forced to borrow
an inferior one from a peasant.

However, the borrowed crossbow
isn’t adjusted perfectly,

and William finds that his practice shots

cluster in a tight spread
beneath the bullseye.

Fortunately, he has time
to correct for it before it’s too late.

Variation two:

William begins to doubt his skills
in the long hours before the challenge

and his hand develops a tremor.

His practice shots still cluster
around the apple

but in a random pattern.

Occasionally, he hits the apple,

but with the wobble,
there is no guarantee of a bullseye.

He must settle his nervous hand

and restore the certainty in his aim
to save his son.

At the heart of these variations
are two terms often used interchangeably:

accuracy and precision.

The distinction between the two

is actually critical
for many scientific endeavours.

Accuracy involves how close you come
to the correct result.

Your accuracy improves with tools
that are calibrated correctly

and that you’re well-trained on.

Precision, on the other hand,

is how consistently you can get
that result using the same method.

Your precision improves
with more finely incremented tools

that require less estimation.

The story of the stolen crossbow
was one of precision without accuracy.

William got the same wrong result
each time he fired.

The variation with the shaky hand
was one of accuracy without precision.

William’s bolts clustered
around the correct result,

but without certainty of a bullseye
for any given shot.

You can probably get away
with low accuracy

or low precision in everyday tasks.

But engineers and researchers
often require accuracy

on microscopic levels with
a high certainty of being right every time.

Factories and labs increase precision

through better equipment
and more detailed procedures.

These improvements can be expensive,
so managers must decide

what the acceptable uncertainty
for each project is.

However, investments in precision

can take us beyond
what was previously possible,

even as far as Mars.

It may surprise you that NASA
does not know exactly where

their probes are going to touch down
on another planet.

Predicting where they will land
requires extensive calculations

fed by measurements
that don’t always have a precise answer.

How does the Martian atmosphere’s density
change at different elevations?

What angle will the probe
hit the atmosphere at?

What will be the speed
of the probe upon entry?

Computer simulators run thousands
of different landing scenarios,

mixing and matching values
for all of the variables.

Weighing all the possibilities,

the computer spits out
the potential area of impact

in the form of a landing ellipse.

In 1976, the landing ellipse
for the Mars Viking Lander

was 62 x 174 miles,
nearly the area of New Jersey.

With such a limitation,

NASA had to ignore many interesting
but risky landing areas.

Since then, new information
about the Martian atmosphere,

improved spacecraft technology,

and more powerful computer simulations
have drastically reduced uncertainty.

In 2012, the landing ellipse
for the Curiosity Lander

was only 4 miles wide by 12 miles long,

an area more than 200 times
smaller than Viking’s.

This allowed NASA to target
a specific spot in Gale Crater,

a previously un-landable area
of high scientific interest.

While we ultimately strive for accuracy,

precision reflects our certainty
of reliably achieving it.

With these two principles in mind,

we can shoot for the stars

and be confident
of hitting them every time.

随着故事的发展
,传奇神射手威廉泰尔

被一个腐败的领主逼迫进行残酷的挑战

除非威廉能从
他头上射下一个苹果,否则威廉的儿子将被处决。

威廉成功了,但让我们想象
一下这个故事的两种变化。

在第一个变体中

,领主雇佣了一个强盗来偷
威廉可靠的弩,

所以他被迫
向农民借了一把劣质的弩。

然而,借来的弩
并没有完美地调整

,威廉发现他的练习射击

在靶心下方密集分布

幸运的是,他有时间
在为时已晚之前纠正它。

变化二:

威廉
在挑战前的很长一段时间内开始怀疑他的技能

,他的手开始颤抖。

他的练习投篮仍然聚集
在苹果周围,

但以随机模式。

偶尔,他会击中苹果,

但随着晃动
,无法保证靶心。

他必须安抚紧张的手

,恢复他
拯救儿子的目标的确定性。

这些变化的核心
是两个经常互换使用的术语:

准确度和精确度。

两者之间的

区别实际上
对许多科学努力至关重要。

准确性涉及您
与正确结果的接近程度。

使用经过正确校准且训练有素的工具可以提高您的准确性

另一方面,精度


使用相同方法获得结果的一致性。

使用需要较少估计的更精细增量的工具

可以提高您的精度。

被盗弩的故事
是精确而不准确的故事之一。 每次解雇

威廉都会得到同样的错误结果

颤抖的手的变化
是一种没有精确性的准确性。

威廉的螺栓
围绕正确的结果聚集,


对于任何给定的镜头都不确定靶心。 在日常任务中,

您可能会
以低准确度

或低精确度侥幸逃脱。

但是工程师和研究人员
通常需要

微观层面的准确性
,并且每次都高度确定是正确的。

工厂和实验室

通过更好的设备
和更详细的程序来提高精度。

这些改进可能代价高昂,
因此管理人员必须

确定每个项目可接受的不
确定性是多少。

然而,对精度的投资

可以使我们超越
以前的可能,

甚至远至火星。

NASA
并不知道

他们的探测器将
在另一个星球上着陆的确切位置,这可能会让您感到惊讶。

预测它们将降落在哪里
需要

通过测量提供的大量计算,这些测量
并不总是有精确的答案。

火星大气密度
在不同海拔高度有何变化?

探测器将以什么角度
撞击大气层?

进入时探测器的速度是多少?

计算机模拟器运行数千
种不同的着陆场景,

混合和
匹配所有变量的值。

权衡所有可能性

,计算机

以着陆椭圆的形式吐出潜在的影响区域。

1976 年,Mars Viking Lander 的着陆椭圆

为 62 x 174 英里,
几乎是新泽西州的面积。

有了这样的限制,

NASA 不得不忽略许多有趣
但有风险的着陆区。

从那时起,
关于火星大气的新信息、

改进的航天器技术

和更强大的计算机模拟
大大减少了不确定性。

2012 年,
好奇号着陆器的着陆椭圆

只有 4 英里宽 x 12 英里长,

比维京人的面积小 200 多倍。

这使得美国宇航局能够瞄准
盖尔陨石坑中的一个特定地点,这

是一个以前无法登陆
的具有高度科学兴趣的区域。

虽然我们最终力求准确,但

精确反映了我们
可靠地实现它的确定性。

牢记这两个原则,

我们就可以向星星射击,

并有信心
每次都击中它们。