The woman who stared at the sun Alex Gendler

In the spring of 1944, Tokyo residents
experienced numerous aerial attacks

from Allied bombers.

Air raid sirens warned citizens
to get indoors

and preceded strategic blackouts
across the city.

But 28-year old Hisako Koyama
saw these blackouts as opportunities.

Dragging a futon over her head
for protection,

Koyama would gaze at the night sky,

tracking all sorts
of astronomical phenomena.

However, her latest endeavor required
the light of day.

By angling her telescope towards the sun,

Koyama could project the star’s
light onto a sheet of paper,

allowing her to sketch
the sun’s shifting surface.

She spent weeks recreating this set up,
tracking every change she saw.

But while Koyama didn’t know it,

these drawings were the start
of one of the most important records

of solar activity in human history.

To understand exactly what Koyama
saw on the sun’s surface,

we first need to understand
what’s happening inside the star.

Every second,
trillions of hydrogen atoms

fuse into helium atoms
in a process called nuclear fusion.

This ongoing explosion maintains
the sun’s internal temperature

of roughly 15 million degrees Celsius,

which is more than enough energy
to transform gas

into churning pools of plasma.

Plasma consists of charged particles
that produce powerful magnetic fields.

But unlike the stable charged particles
that maintain magnetic activity on Earth,

this plasma is constantly in flux,

alternately disrupting and amplifying
the sun’s magnetic field.

This ongoing movement can produce

temporary concentrations
of magnetic activity

which inhibit the movement of molecules
and in turn reduce heat in that area.

And since regions with less heat
generate less light,

places with the strongest magnetic fields
appear as dark spots

scattered across the sun’s surface.

These so-called sunspots
are always moving,

both as a result of plasma
swirling within the sphere,

and the sun’s rotation.

And because they’re often
clustered together,

accurately counting sunspots and tracking
their movement can be a challenge,

depending greatly on the perception
and judgment of the viewer.

This is precisely where Koyama’s
contributions would be so valuable.

Despite having no
formal training in astronomy,

her observations and sketches
were remarkably accurate.

After sending her work
to the Oriental Astronomical Association,

she received a letter of commendation for
her dedicated and detailed observations.

With their support, she began to visit
the Tokyo Museum of Science,

where she could use a far superior
telescope to continue her work.

Koyama soon joined the museum’s staff
as a professional observer,

and over the next 40 years,
she worked on a daily basis,

producing over 10,000 drawings
of the sun’s surface.

Researchers already knew magnetic currents
in the sun followed an 11 year cycle

that moved sunspots in a butterfly shaped
path over the star’s surface.

But using Koyama’s record,

they could precisely follow
specific sunspots and clusters

through that journey.

This kind of detail offered a real-time
indication of the sun’s magnetic activity,

allowing scientists to track
all kinds of solar phenomena,

including volatile solar flares.

These flares typically emanate
from the vicinity of sunspots,

and can travel all the way
to Earth’s atmosphere.

Here, they can create geomagnetic storms

capable of disrupting long range
communication and causing blackouts.

Solar flares also pose a major risk
to satellites and manned space stations,

making them essential to predict
and plan for.

During an interview in 1964,

Koyama lamented that her 17 years
of observation had barely been enough

to produce a single butterfly record
of the solar cycle.

But by the end of her career,
she’d drawn three and a half cycles—

one of the longest records ever made.

Better still, the quality of her
drawings was so consistent,

researchers used them as a baseline
to reconstruct the past 400 years

of sunspot activity
from various historical sources.

This project extends Koyama’s legacy
far beyond her own lifetime,

and proves that science is not built
solely on astounding discoveries,

but also on careful observation
of the world around us.

1944 年春天,东京居民
经历

了盟军轰炸机的多次空袭。

空袭警报器警告
市民进入室内,

并在
整个城市发生战略性停电之前。

但 28 岁的 Hisako Koyama
将这些停电视为机会。 小山在

头上拖着被褥
作为保护,

凝视着夜空,

追踪着
各种天文现象。

然而,她最近的努力
需要光明。

通过将她的望远镜对准太阳,

小山可以将恒星的
光投射到一张纸上,

让她可以勾勒
出太阳不断变化的表面。

她花了数周时间重新创建这个设置,
跟踪她看到的每一个变化。

但是,虽然小山不知道,但

这些图纸

是人类历史上最重要的太阳活动记录之一的开始。

要准确了解小山
在太阳表面看到的情况,

我们首先需要了解
恒星内部发生了什么。

每秒,
数以万亿计的氢原子

在称为核聚变的过程中融合成氦原子。

这种持续的爆炸
使太阳的内部温度保持

在大约 1500 万摄氏度,

这足以
将气体

转化为搅动的等离子体池。

等离子体由
产生强大磁场的带电粒子组成。

但与
在地球上保持磁活动的稳定带电粒子不同,

这种等离子体不断地在流动,

交替地破坏和
放大太阳的磁场。

这种持续的运动可以产生

暂时集中
的磁活动

,从而抑制分子的运动
,进而减少该区域的热量。

而且由于
热量较少的区域产生的光较少,

因此磁场最强的地方
会表现为

散布在太阳表面的黑点。

这些所谓的太阳黑子
总是在移动,

这既是由于等离子体
在球体内旋转,

也是由于太阳的自转。

而且由于它们经常
聚集在一起,因此

准确计算太阳黑子并跟踪
它们的运动可能是一项挑战,

这在很大程度上取决于观众的感知
和判断。

这正是小山的
贡献如此宝贵的地方。

尽管没有
受过正式的天文学训练,但

她的观察和
草图非常准确。

将作品
寄给东方天文学会后,

她收到了一封表扬信,表彰
她认真细致的观察。

在他们的支持下,她开始
参观东京科学博物馆,

在那里她可以使用更先进的
望远镜继续她的工作。

小山很快就以专业观察员的身份加入了博物馆的工作人员

,在接下来的 40 年里,
她每天都在工作,

绘制了超过 10,000
幅太阳表面的图画。

研究人员已经知道
太阳中的磁流遵循一个 11 年的周期

,使太阳黑子在恒星表面以蝴蝶形状的
路径移动。

但是使用小山的记录,

他们可以精确地跟踪
特定的太阳黑子和

星团。

这种细节提供
了太阳磁场活动的实时指示,

使科学家能够追踪
各种太阳现象,

包括不稳定的太阳耀斑。

这些耀斑通常
从太阳黑子附近发出,

并且可以一直传播
到地球大气层。

在这里,他们可以制造

能够破坏远程
通信并导致停电的地磁风暴。

太阳耀斑也
对卫星和载人空间站构成重大风险

,因此对于预测
和计划至关重要。

在 1964 年的一次采访中,

小山哀叹,她 17 年
的观察还

不足以产生一个
太阳周期的蝴蝶记录。

但在她的职业生涯结束时,
她已经画了三个半周期——

这是有史以来最长的记录之一。

更好的是,她的
画作质量如此稳定,

研究人员将它们作为基线
,从各种历史资料中重建过去 400 年

的太阳黑子活动

这个项目将小山的遗产
延伸到她自己的一生之外,

并证明科学不仅建立
在惊人的发现之上,

还建立在对
我们周围世界的仔细观察之上。