A needle in countless haystacks Finding habitable worlds Ariel Anbar

Translator: tom carter
Reviewer: Bedirhan Cinar

The universe contains about 100 billion galaxies.

Each of those galaxies contains about 100 billion stars.

Many of those stars have planets orbiting them.

So how do we look for life in all that immensity?

It’s like searching for a needle in trillions of haystacks.

We might want to focus our search on planets that we know can support life as we know it –

what we call habitable worlds.

What do such planets look like?

To answer that question, we don’t look out there.

Instead, we look at ourselves. At Earth.

Because this is the one planet in the universe that we know for certain is habitable.

When we look at Earth from space, we see a blue, watery world.

It’s no coincidence that three quarters of the surface is covered by oceans.

Because of its unique chemical and physical properties,

water is absolutely essential for all life as we know it.

And so we get especially excited about other worlds on which water is abundant.

Fortunately, water is very common in the universe.

But life needs water in the form of liquid, not ice, and not vapor,

and that’s a little bit less common.

For a planet to have liquid water at its surface, three things are important.

First, the planet needs to be large enough that the force of gravity

keeps the water molecules from flying off into space.

For example, Mars is smaller than Earth, and so has less gravity,

and that’s one important reason that Mars has a very thin atmosphere,

and no oceans at its surface.

Second, the planet needs to have an atmosphere. Why?

Because without an atmosphere, the planet is in a vacuum,

and liquid water isn’t stable in a vacuum.

For example, our moon has no atmosphere, and so if you spill some water on the moon,

it will either boil away as vapor, or freeze solid to make ice.

Without the pressure of an atmosphere, liquid water can’t survive.

Third, the planet needs to be at the right distance from its star.

Too close, and the surface temperature will exceed the boiling point of water,

and oceans will turn to vapor.

Too far, and the surface temperature will fall below the freezing point of water,

causing the oceans to turn to ice.

Fire or ice. For life as we know it, neither will suffice.

You can imagine that the perfect zone where water stays liquid looks kind of like a belt around a star.

We call that belt the habitable zone.

So when we search for habitable worlds, we definitely want to look for planets in the habitable zones around their stars.

Those regions are the best bets to find planets like Earth.

But while habitable zones are a pretty good place to begin the search for planets with life,

there are a couple of complications.

First, a planet isn’t necessarily habitable just because it’s in the habitable zone.

Consider the planet Venus in our solar system.

If you were an alien astronomer, you’d think Venus is a pretty good bet for life.

It’s the right size, it has an atmosphere, and it’s in the habitable zone of our sun.

An alien astronomer might see it as Earth’s twin.

But Venus is not habitable, at least not at its surface.

Not by life as we know it. It’s too hot.

That’s because Venus' atmosphere is full of carbon dioxide, an important greenhouse gas.

In fact, its atmosphere is almost entirely carbon dioxide,

and is almost 100 times thicker than our own.

As a result, the temperature on Venus is hot enough to melt lead,

and the planet is dry as a bone.

So finding planets of the right size and distance from their stars is only a beginning.

We also want to know about the makeup of their atmospheres.

The second complication emerges when we look a little more deeply at planet Earth.

In the last 30 years, we’ve discovered microbes living in all sorts of extreme environments.

We find them in fissures of rock miles beneath our feet,

in boiling waters of the ocean floor,

in acidic waters of thermal springs,

and in cloud droplets miles above our heads.

These so-called extremophiles aren’t rare.

Some scientists estimate that the mass of microbes living deep underground

equals the mass of all the life at Earth’s surface.

These subterranean microbes don’t need oceans or sunshine.

These discoveries suggest that Earth-like planets may be only the tip of the astrobiological iceberg.

It’s possible that life might persist in aquifers beneath the surface of Mars.

Microbes may thrive on Jupiter’s moon Europa,

where liquid water ocean probably lies beneath the icy crust.

Another ocean beneath the surface of Saturn’s moon Enceladus is the source of geysers erupting into space.

Could these geysers be raining microbes?

Could we fly through them to find out?

And what about life as we don’t know it, using a liquid other than water?

Maybe we are the crazy creatures living in an unusual and extreme environment.

Maybe the real habitable zone is so large

that there are billions of needles in those trillions of haystacks.

Maybe in the big scheme of things, Earth is only one of many different kinds of habitable worlds.

The only way to find out is to go out and explore.

译者:tom carter
审稿人:Bedirhan

Cinar 宇宙包含大约 1000 亿个星系。

这些星系中的每一个都包含大约 1000 亿颗恒星。

其中许多恒星都有行星围绕它们运行。

那么,我们如何在浩瀚的宇宙中寻找生命呢?

这就像在数万亿大海捞针中寻找一根针。

我们可能希望将我们的搜索重点放在我们知道可以支持我们所知道的生命的行星上——

我们称之为可居住的世界。

这样的行星是什么样子的?

要回答这个问题,我们不会向外看。

相反,我们审视自己。 在地球。

因为这是宇宙中我们确定可以居住的一颗行星。

当我们从太空看地球时,我们看到的是一个蓝色的、水汪汪的世界。

四分之三的表面被海洋覆盖并非巧合。

由于其独特的化学和物理特性,

水对于我们所知的所有生命都是绝对必要的。

因此,我们对其他水资源丰富的世界感到特别兴奋。

幸运的是,水在宇宙中很常见。

但是生命需要液体形式的水,而不是冰,也不是蒸汽

,这有点不常见。

对于行星表面有液态水,三件事很重要。

首先,行星需要足够大,以使重力

阻止水分子飞入太空。

例如,火星比地球小,因此引力也较小

,这也是火星大气层非常稀薄

、表面没有海洋的重要原因之一。

其次,地球需要有大气层。 为什么?

因为没有大气层,行星处于真空中

,液态水在真空中不稳定。

例如,我们的月球没有大气层,所以如果你将一些水洒在月球上,

它要么会蒸发成蒸汽,要么会冻结成冰。

没有大气压力,液态水就无法生存。

第三,这颗行星需要与它的恒星保持正确的距离。

太近了,表面温度会超过水的沸点

,海洋会变成蒸汽。

太远了,表面温度将低于水的冰点,

导致海洋变成冰。

火或冰。 对于我们所知的生活,两者都不够。

你可以想象,水保持液态的完美区域看起来有点像恒星周围的腰带。

我们称那条带为宜居带。

因此,当我们寻找宜居星球时,我们肯定想在恒星周围的宜居带内寻找行星。

这些地区是寻找像地球这样的行星的最佳选择。

但是,虽然宜居带是开始寻找有生命的行星的好地方,

但也有一些复杂的情况。

首先,一颗行星并不一定因为它在宜居带内就一定是宜居的。

考虑我们太阳系中的金星行星。

如果你是外星天文学家,你会认为金星是一个很好的人生赌注。

它的大小合适,有大气层,并且位于我们太阳的宜居带。

外星天文学家可能会将其视为地球的孪生兄弟。

但是金星不适合居住,至少在它的表面上是不适合居住的。

不是我们所知道的生活。 太热了。

那是因为金星的大气层中充满了二氧化碳,这是一种重要的温室气体。

事实上,它的大气几乎完全是二氧化碳,

而且比我们自己的大气厚近 100 倍。

结果,金星上的温度高到足以熔化铅,

而这颗行星像骨头一样干燥。

因此,寻找大小合适且与恒星距离合适的行星只是一个开始。

我们也想知道他们的气氛构成。

当我们更深入地观察地球时,就会出现第二个复杂问题。

在过去的 30 年中,我们发现了生活在各种极端环境中的微生物。

我们在脚下数英里的岩石裂缝中、

在海底沸腾的水中、

在温泉的酸性水中

以及在我们头顶数英里的云滴中发现它们。

这些所谓的极端微生物并不罕见。

一些科学家估计,生活在地下深处的微生物

的质量等于地球表面所有生命的质量。

这些地下微生物不需要海洋或阳光。

这些发现表明,类地行星可能只是天体生物学的冰山一角。

火星表面下的含水层中可能存在生命。

微生物可能会在木星的卫星欧罗巴上繁衍生息,

那里的液态水海洋可能位于冰冷的地壳之下。

土星卫星土卫二表面下的另一个海洋是间歇泉喷入太空的来源。

这些间歇泉会下雨微生物吗?

我们可以飞过去找出答案吗?

那么我们不知道的生命,使用水以外的液体呢?

也许我们是生活在不寻常和极端环境中的疯狂生物。

也许真正的宜居带是如此之大

,以至于在这数万亿的干草堆里有数十亿根针。

也许在大的计划中,地球只是许多不同类型的可居住世界之一。

找出答案的唯一方法是出去探索。