Can 100 renewable energy power the world Federico Rosei and Renzo Rosei

Every year, the world uses
35 billion barrels of oil.

This massive scale of fossil fuel
dependence pollutes the Earth

and it won’t last forever.

Scientists estimate that we’ve consumed
about 40% of the world’s oil.

According to present estimates,

at this rate, we’ll run out of oil
and gas in 50 years or so,

and in about a century for coal.

On the flip side, we have abundant
sun, water, and wind.

These are renewable energy sources,

meaning that we won’t use them up
over time.

What if we could exchange
our fossil fuel dependence

for an existence based
solely on renewables?

We’ve pondered that question for decades,

and yet, renewable energy still
only provides about 13% of our needs.

That’s because reaching 100% requires
renewable energy that’s inexpensive

and accessible.

This represents a huge challenge,

even if we ignore the politics involved
and focus on the science and engineering.

We can better understand the problem
by understanding how we use energy.

Global energy use is a diverse
and complex system,

and the different elements
require their own solutions.

But for now, we’ll focus on two
of the most familiar in everyday life:

electricity and liquid fuels.

Electricity powers blast furnaces,
elevators, computers,

and all manner of things in homes,
businesses, and manufacturing.

Meanwhile, liquid fuels
play a crucial role

in almost all forms of transportation.

Let’s consider the electrical
portion first.

The great news is that our technology
is already advanced enough

to capture all that energy
from renewables,

and there’s an ample supply.

The sun continuously radiates

about 173 quadrillion watts
of solar energy at the Earth,

which is almost 10,000 times
our present needs.

It’s been estimated that a surface that
spans several hundred thousand kilometers

would be needed to power humanity
at our present usage levels.

So why don’t we build that?

Because there are other
hurdles in the way,

like efficiency

and energy transportation.

To maximize efficiency,

solar plants must be located in areas
with lots of sunshine year round,

like deserts.

But those are far away
from densely populated regions

where energy demand is high.

There are other forms of renewable energy
we could draw from,

such as hydroelectric,

geothermal,

and biomasses,

but they also have limits based on
availability and location.

In principle, a connected electrical
energy network

with power lines crisscrossing the globe

would enable us to transport power
from where it’s generated

to where it’s needed.

But building a system on this scale
faces an astronomical price tag.

We could lower the cost by developing
advanced technologies

to capture energy more efficiently.

The infrastructure for transporting energy
would also have to change drastically.

Present-day power lines lose about 6-8%
of the energy they carry

because wire material dissipates energy
through resistance.

Longer power lines would mean
more energy loss.

Superconductors could be one solution.

Such materials can transport electricity
without dissipation.

Unfortunately, they only work
if cooled to low temperatures,

which requires energy
and defeats the purpose.

To benefit from that technology,

we’d need to discover
new superconducting materials

that operate at room temperature.

And what about the all-important,
oil-derived liquid fuels?

The scientific challenge there is to store
renewable energy

in an easily transportable form.

Recently, we’ve gotten better
at producing lithium ion batteries,

which are lightweight
and have high-energy density.

But even the best of these
store about 2.5 megajoules per kilogram.

That’s about 20 times less than the energy
in one kilogram of gasoline.

To be truly competitive, car batteries
would have to store much more energy

without adding cost.

The challenges only increase
for bigger vessels, like ships and planes.

To power a cross-Atlantic
flight for a jet,

we’d need a battery weighing
about 1,000 tons.

This, too, demands a technological leap
towards new materials,

higher energy density,

and better storage.

One promising solution would be
to find efficient ways

to convert solar into chemical energy.

This is already happening in labs,

but the efficiency is still too low
to allow it to reach the market.

To find novel solutions, we’ll need
lots of creativity,

innovation,

and powerful incentives.

The transition towards all-renewable
energies is a complex problem

involving technology,
economics, and politics.

Priorities on how to tackle this challenge
depend on the specific assumptions

we have to make when trying to solve
such a multifaceted problem.

But there’s ample reason to be optimistic
that we’ll get there.

Top scientific minds around the world
are working on these problems

and making breakthroughs all the time.

And many governments and businesses
are investing in technologies

that harness the energy all around us.

每年,世界使用
350 亿桶石油。

这种大规模的化石燃料
依赖污染了地球

,而且不会永远持续下去。

科学家估计,我们消耗
了世界上大约 40% 的石油。

根据目前的估计,

按照这个速度,我们将
在 50 年左右的时间里用完石油和天然气,

在大约一个世纪的时间里用完煤炭。

另一方面,我们有充足的
阳光、水和风。

这些是可再生能源,

这意味着我们不会
随着时间的推移将它们用完。

如果我们可以将
我们对化石燃料的依赖

换成
完全基于可再生能源的存在会怎样?

几十年来,我们一直在思考这个问题

,然而,可再生能源仍然
只能满足我们大约 13% 的需求。

这是因为达到 100%
需要廉价

且易于使用的可再生能源。

即使我们忽略所涉及的政治
并专注于科学和工程,这也是一个巨大的挑战。

通过了解我们如何使用能源,我们可以更好地理解这个问题。

全球能源使用是一个多样化
和复杂的系统

,不同的元素
需要各自的解决方案。

但现在,我们将关注
日常生活中最熟悉的两种:

电力和液体燃料。

电力为高炉、
电梯、计算机

以及家庭、
企业和制造业中的各种事物提供动力。

同时,液体燃料

在几乎所有形式的运输中都发挥着至关重要的作用。

让我们首先考虑电气
部分。

好消息是,我们的
技术已经足够先进,

可以从可再生能源中获取所有能源

而且供应充足。

太阳持续向地球辐射

约 173 万亿瓦
的太阳能,

几乎是
我们目前需求的 10,000 倍。

据估计,按照我们目前的使用水平,需要一个
跨越数十万公里

的表面来为人类提供动力

那么我们为什么不建造它呢?

因为还有其他
障碍,

比如效率

和能源运输。

为了最大限度地提高效率,

太阳能发电厂必须位于
全年阳光充足的地区,

如沙漠。

但这些远离

能源需求高的人口稠密地区。

我们可以利用其他形式的可再生能源

例如水电、

地热

和生物质能,

但它们也有基于
可用性和位置的限制。

原则上,一个连接的
电力网络

与遍布全球的电力线

将使我们能够将电力
从产生

的地方输送到需要的地方。

但构建这种规模的系统
面临着天文数字标签。

我们可以通过开发
先进技术

来更有效地捕获能源来降低成本。

运输能源的基础设施
也必须彻底改变。

当今的电力线损失了大约 6-8%
的能量,

因为电线材料
通过电阻耗散能量。

更长的电力线意味着
更多的能量损失。

超导体可能是一种解决方案。

这种材料可以在
没有耗散的情况下传输电力。

不幸的是,它们只有
在冷却到低温时才起作用,

这需要能量
并且达不到目的。

为了从这项技术中受益,

我们需要

发现在室温下工作的新超导材料。

那么最重要的
石油衍生液体燃料呢?

那里的科学挑战是以易于运输的形式存储
可再生能源

最近,我们
在生产

重量轻
且能量密度高的锂离子电池方面做得更好。

但即使是最好的这些
商店,每公斤约 2.5 兆焦耳。

这比一公斤汽油的能量少了大约 20 倍

为了真正具有竞争力,汽车电池
必须在

不增加成本的情况下储存更多的能量。

对于更大的船只,如轮船和飞机,挑战只会增加。


为喷气式飞机跨大西洋飞行提供动力,

我们需要一个重
约 1,000 吨的电池。

这也需要
向新材料、

更高的能量密度

和更好的存储技术飞跃。

一种有希望的解决方案是

找到将太阳能转化为化学能的有效方法。

这已经在实验室中发生,

但效率仍然太低
,无法进入市场。

为了找到新颖的解决方案,我们需要
大量的创造力、

创新

和强大的激励措施。

向全可再生
能源过渡是一个

涉及技术、
经济和政治的复杂问题。

如何应对这一挑战的优先级取决于

我们在尝试解决
这样一个多方面问题时必须做出的具体假设。

但我们有充分的理由乐观地
认为我们会到达那里。

世界各地的顶尖科学家
一直在研究这些问题

并不断取得突破。

许多政府和企业
正在投资于

利用我们周围能源的技术。