Can you solve the worlds most evil wizard riddle Dan Finkel

The evil wizard MoldeVort
has been trying to kill you for years,

and today it looks like
he’s going to succeed.

But your friends are on their way,
and if you can survive until they arrive,

they should be able to help stop him.

The evil wizard’s protective charms
ward off every spell you know,

so in an act of desperation
you throw the only object in reach at him:

Pythagoras’s cursed chessboard.

It works, but with a catch.

MoldeVort starts in one corner
of the 5x5 board.

You have a few minutes to choose
four distinct positive whole numbers.

MoldeVort gets to say one of them,
and if you can pick a square on the board

whose center is exactly
that distance away,

the curse will force him
to move to that spot.

Then he’ll have to choose
any of the four numbers,

and the process repeats until
you can’t keep him inside the board

with legal moves.

Then he’ll break free of the spell
and almost certainly kill you.

What four numbers can you choose
to keep MoldeVort trapped by your spell

long enough for help to arrive?
And what’s your strategy?

Pause the video to figure it out yourself.

Answer in 3

Answer in 2

Answer in 1

The trick here is to keep MoldeVort
where you want him.

And one way to figure out how to do that

is to play out the game
as MoldeVort would:

always trying to escape.

You’re dealing with a relatively
small board,

so the numbers can’t be too big.

Let’s start by trying 1, 2, 3, 4
to see what happens.

Moldevort could escape those numbers
in just three moves.

By saying 2, then 3,

he would force you to let him into one
of the middle points of the grid,

and then a 4 would break him free.

But that means you’ll need to allow
a number larger than 4,

which is the distance from one end
of a row to another.

How is that even possible?

Through diagonal moves.

There are, in fact, points that are
distance 5 from each other,

which we know thanks
to the Pythagorean Theorem.

That states that the squares
of the sides of a right triangle

add up to the square of its hypotenuse.

One of the most famous
Pythagorean triples is 3, 4, 5,

and that triangle is hiding all over
your chessboard.

So if MoldeVort was here, and he said 5,
you could move him to these spaces.

There’s another insight that will help.

The board is very symmetrical:
If MoldeVort is in a corner,

it doesn’t really matter
to you which corner it is.

So we can think of the corners
as being functionally the same,

and color them all blue.

Similarly, the spaces neighboring
the corners behave the same as each other,

and we’ll make them red.

Finally, the midpoints of the sides
are a third type.

So instead of having to develop a strategy

for each of the 16 spaces
on the outside of the board,

we can reduce the problem to just three.

Meanwhile, all the inside spaces
are bad for us,

because if MoldeVort ever reaches one,

he’ll be able to say any number
larger than 3 and go free.

Orange spaces are trouble too,
since any number except 1, 2, or 4

would take him to an inside space
or off the board.

So orange is out and you’ll need
to keep him on blue and red.

That means 2 is bad,

since it could take MoldeVort
to orange on the first turn.

But the four other smallest numbers,
1, 3, 4, and 5, might work.

Let’s try them and see what happens.

If MoldeVort says 1, you can make
him go from blue to red or red to blue.

And the same works if he says 3.

Thanks to our diagonals,
this is even true if he says 5.

If he says 4, you can keep him
on the color he’s already on

by moving the length of a row or column.

So these four numbers work!

Even if your friends don’t get here
right away,

you’ll be able to keep
the world’s most evil wizard

contained for as long as you need.

邪恶的巫师 MoldeVort
多年来一直试图杀死你

,今天看来
他会成功。

但是你的朋友正在路上
,如果你能活到他们到达,

他们应该能够帮助阻止他。

邪恶巫师的护身符
挡住了你知道的每一个咒语,

所以在绝望中
你把唯一能拿到的东西扔给他:

毕达哥拉斯被诅咒的棋盘。

它有效,但有一个问题。

MoldeVort 从
5x5 板的一个角落开始。

你有几分钟的时间来选择
四个不同的正整数。

MoldeVort 会说出其中一个
,如果你能在棋盘上选择一个

中心正好在
那个距离之外的方格

,诅咒会迫使
他移动到那个位置。

然后他必须选择
四个数字中的任何一个,

然后重复该过程,直到
您无法通过合法动作将他留在棋盘内

然后他会摆脱咒语
,几乎肯定会杀了你。

你可以选择哪四个数字
来让 MoldeVort 被你的咒语困住

足够长的时间让帮助到达?
你的策略是什么?

暂停视频以自己弄清楚。

回答 3

回答 2

回答 1

这里的诀窍是将 MoldeVort 保持
在您想要的位置。

弄清楚如何做到这

一点的一种方法是
像 MoldeVort 那样玩游戏:

总是试图逃跑。

你正在处理一个相对
较小的董事会,

所以数字不能太大。

让我们从尝试 1、2、3、4 开始,
看看会发生什么。

Moldevort只需三步就可以摆脱这些
数字。

通过说 2,然后 3,

他会强迫你让他进
入网格的中间点之一,

然后一个 4 会打破他的自由。

但这意味着您需要允许
大于 4 的数字,

即从一行的一端到另一端的距离

这怎么可能呢?

通过对角线移动。

事实上,有些点彼此之间的
距离为 5,

这要
归功于勾股定理。

这表明
直角三角形的边

的平方加起来是它的斜边的平方。

最著名的
毕达哥拉斯三元组之一是 3、4、5,

而这个三角形隐藏在
你的棋盘上。

所以如果 MoldeVort 在这里,他说 5,
你可以把他移到这些空间。

还有另一种见解会有所帮助。

棋盘非常对称:
如果 MoldeVort 在角落,

那么它在
哪个角落对您来说并不重要。

所以我们可以认为
角落在功能上是相同的,

并将它们全部涂成蓝色。

同样,与拐角相邻的空间
彼此的行为相同

,我们将它们设为红色。

最后,边的中点
是第三种类型。

因此,不必为棋盘外侧

的 16 个空间中的每一个都制定策略

我们可以将问题减少到三个。

同时,所有的内部空间
对我们都不利,

因为如果 MoldeVort 达到一个,

他将能够说出任何
大于 3 的数字并获得自由。

橙色空间也很麻烦,
因为除了 1、2 或 4 之外的任何数字

都会将他带到内线空间
或离开棋盘。

所以橙色出来了,你
需要让他保持蓝色和红色。

这意味着 2 不好,

因为它可能会使 MoldeVort
在第一回合变为橙色。

但是其他四个最小的数字
1、3、4 和 5 可能会起作用。

让我们尝试一下,看看会发生什么。

如果 MoldeVort 说 1,您可以让
他从蓝色变为红色或从红色变为蓝色。

如果他说 3 也一样。

由于我们的对角线
,即使他说 5 也是如此。

如果他说 4,你可以

通过移动行或列的长度来保持他已经使用的颜色。

所以这四个数字有效!

即使您的朋友没有立即赶到
这里,

您也可以
将世界上最邪恶的巫师

控制在您需要的时间。