How much electricity does it take to power the world

You flip a switch.

Coal burns in a furnace,
which turns water into steam.

That steam spins a turbine,
which activates a generator,

which pushes electrons
through the wire.

This current propagates through hundreds
of miles of electric cables

and arrives at your home.

All around the world, countless people
are doing this every second—

flipping a switch, plugging in,
pressing an “on” button.

So how much electricity
does humanity need?

The amount we collectively use
is changing fast,

so to answer this question,

we need to know not just how much
the world uses today,

but how much we’ll use in the future.

The first step is understanding
how we measure electricity.

It’s a little bit tricky.

A joule is a unit of energy,

but we usually don’t measure
electricity in just joules.

Instead, we measure it in watts.

Watts tell us how much energy,
per second, it takes to power something.

One joule per second
equals one watt.

It takes about .1 watts
to power a smart phone,

a thousand to power your house,
a million for a small town,

and a billion for a mid-size city.

As of 2020, it takes 3 trillion watts
to power the entire world.

But almost a billion people don’t have
access to reliable electricity.

As countries become more industrialized
and more people join the grid,

electricity demand is expected
to increase about 80% by 2050.

That number isn’t the complete picture.

We’ll also have to use electricity
in completely new ways.

Right now, we power a lot of things
by burning fossil fuels,

emitting an unsustainable amount
of greenhouse gases

that contribute to global warming.

We’ll have to eliminate
these emissions entirely

to ensure a sustainable future
for humanity.

The first step to doing so,
for many industries,

is to switch from fossil fuels
to electric power.

We’ll need to electrify cars,

switch buildings heated by natural gas
furnaces to electric heat pumps,

and electrify the huge amount of heat
used in industrial processes.

So all told, global electricity needs
could triple by 2050.

We’ll also need all that electricity
to come from clean energy sources

if it’s going to solve the problems
caused by fossil fuels.

Today, only one third of the electricity
we generate comes from clean sources.

Fossil fuels are cheap and convenient,
easy to ship,

and easy to turn into electricity
on demand.

So how can we close the gap?

Wind and solar power work great
for places with lots of wind and sunshine,

but we can’t store and ship sunlight
or wind the way we can transport oil.

To make full use of energy from these
sources at other times or in other places,

we’d have to store it in batteries

and improve our power grid infrastructure
to transport it long distances.

Meanwhile, nuclear power plants
use nuclear fission

to generate carbon-free electricity.

Though still more expensive
than plants that burn fossil fuels,

they can be built anywhere

and don’t depend on intermittent
energy sources like the sun or wind.

Researchers are currently working
to improve nuclear waste disposal

and the safety of nuclear plants.

There’s another possibility we’ve been
trying to crack since the 1940s:

nuclear fusion.

It involves smashing light atoms together,
so they fuse,

and harnessing the energy this releases.

Accidents aren’t a concern
with nuclear fusion,

and it doesn’t produce the long-lived
radioactive waste fission does.

It also doesn’t have
the transport concerns

associated with wind, solar,
and other renewable energy sources.

A major breakthrough here could
revolutionize clean energy.

The same is true of nuclear fission,
solar, and wind.

Breakthroughs in any
of these technologies,

and especially in all of them together,
can change the world:

not only helping us triple
our electricity supply,

but enabling us to sustain it.

你拨动开关。

煤在熔炉中燃烧
,将水变成蒸汽。

蒸汽使涡轮机旋转,涡轮
机启动发电机

,推动电子
通过电线。

该电流通过
数百英里的电缆传播

并到达您的家中。

在世界各地,
每一秒都有无数人在这样做——

拨动开关、插入
电源、按下“开启”按钮。

那么
人类需要多少电力呢?

我们共同使用的
数量正在快速变化,

因此要回答这个问题,

我们不仅需要知道
世界今天使用了多少,

还需要知道我们将来会使用多少。

第一步是
了解我们如何测量电力。

这有点棘手。

焦耳是能量单位,

但我们通常不会
以焦耳为单位来测量电量。

相反,我们以瓦特为单位进行测量。

瓦特告诉我们
每秒需要多少能量来驱动某物。

每秒一焦耳
等于一瓦特。

为智能手机供电大约需要 0.1 瓦,

为房屋供电需要 1000 瓦,
为小镇供电需要 100 万瓦,

中等城市需要 10 亿瓦。

截至 2020 年,全世界需要 3 万亿瓦
的电力。

但近 10 亿人无法
获得可靠的电力。

随着国家变得更加工业化
和更多人加入电网,

预计
到 2050 年电力需求将增加约 80%。

这个数字并不是全部。

我们还必须
以全新的方式使用电力。

现在,我们通过燃烧化石燃料为很多东西提供动力

排放出导致全球变暖的不可持续数量
的温室气体

我们必须完全消除
这些排放,

以确保人类的可持续
未来。 对于许多行业来说

,这样做的第一步

是从化石燃料
转向电力。

我们需要为汽车供电,

将由天然气炉供暖的建筑物
改用电热泵,

并使
工业过程中使用的大量热量电气化。

总而言之,到 2050 年,全球电力需求
可能会增加两倍。如果要解决化石燃料造成的问题

,我们还需要所有
电力来自清洁能源

今天,我们产生的电力只有三分之一
来自清洁能源。

化石燃料便宜方便,
易于运输

,易于按需转化为电力

那么我们如何才能缩小差距呢?

风能和太阳能非常
适合风能和阳光充足的地方,

但我们不能像运输石油那样储存和运输阳光
或风能。

为了
在其他时间或其他地方充分利用这些来源的能源,

我们必须将其储存在电池中

并改善我们的电网基础设施
以进行长距离运输。

同时,核电站
利用核

裂变产生无碳电力。

虽然仍然
比燃烧化石燃料的植物更昂贵,

但它们可以在任何地方建造,

并且不依赖于
太阳能或风等间歇性能源。

研究人员目前正在
努力改善核废料处理

和核电站的安全性。

自 1940 年代以来,我们一直试图破解另一种可能性:

核聚变。

它涉及将轻原子粉碎在一起,
使它们融合,

并利用由此释放的能量。

事故
与核聚变

无关,它不会产生长寿命的
放射性废物裂变。

它也没有

与风能、太阳能
和其他可再生能源相关的运输问题。

这里的重大突破可能会
彻底改变清洁能源。

核裂变、
太阳能和风能也是如此。

任何这些技术的突破

,尤其是所有这些技术的突破,
都可以改变世界:

不仅帮助
我们将电力供应增加三倍,

而且使我们能够维持电力供应。