Math is the hidden secret to understanding the world Roger Antonsen

Hi.

I want to talk about understanding,
and the nature of understanding,

and what the essence of understanding is,

because understanding is something
we aim for, everyone.

We want to understand things.

My claim is that understanding has to do

with the ability to change
your perspective.

If you don’t have that,
you don’t have understanding.

So that is my claim.

And I want to focus on mathematics.

Many of us think of mathematics
as addition, subtraction,

multiplication, division,

fractions, percent, geometry,
algebra – all that stuff.

But actually, I want to talk
about the essence of mathematics as well.

And my claim is that mathematics
has to do with patterns.

Behind me, you see a beautiful pattern,

and this pattern actually emerges
just from drawing circles

in a very particular way.

So my day-to-day definition
of mathematics that I use every day

is the following:

First of all, it’s about finding patterns.

And by “pattern,” I mean a connection,
a structure, some regularity,

some rules that govern what we see.

Second of all,

I think it is about representing
these patterns with a language.

We make up language if we don’t have it,

and in mathematics, this is essential.

It’s also about making assumptions

and playing around with these assumptions
and just seeing what happens.

We’re going to do that very soon.

And finally, it’s about doing cool stuff.

Mathematics enables us
to do so many things.

So let’s have a look at these patterns.

If you want to tie a tie knot,

there are patterns.

Tie knots have names.

And you can also do
the mathematics of tie knots.

This is a left-out, right-in,
center-out and tie.

This is a left-in, right-out,
left-in, center-out and tie.

This is a language we made up
for the patterns of tie knots,

and a half-Windsor is all that.

This is a mathematics book
about tying shoelaces

at the university level,

because there are patterns in shoelaces.

You can do it in so many different ways.

We can analyze it.

We can make up languages for it.

And representations
are all over mathematics.

This is Leibniz’s notation from 1675.

He invented a language
for patterns in nature.

When we throw something up in the air,

it falls down.

Why?

We’re not sure, but we can represent
this with mathematics in a pattern.

This is also a pattern.

This is also an invented language.

Can you guess for what?

It is actually a notation system
for dancing, for tap dancing.

That enables him as a choreographer
to do cool stuff, to do new things,

because he has represented it.

I want you to think about how amazing
representing something actually is.

Here it says the word “mathematics.”

But actually, they’re just dots, right?

So how in the world can these dots
represent the word?

Well, they do.

They represent the word “mathematics,”

and these symbols also represent that word

and this we can listen to.

It sounds like this.

(Beeps)

Somehow these sounds represent
the word and the concept.

How does this happen?

There’s something amazing
going on about representing stuff.

So I want to talk about
that magic that happens

when we actually represent something.

Here you see just lines
with different widths.

They stand for numbers
for a particular book.

And I can actually recommend
this book, it’s a very nice book.

(Laughter)

Just trust me.

OK, so let’s just do an experiment,

just to play around
with some straight lines.

This is a straight line.

Let’s make another one.

So every time we move,
we move one down and one across,

and we draw a new straight line, right?

We do this over and over and over,

and we look for patterns.

So this pattern emerges,

and it’s a rather nice pattern.

It looks like a curve, right?

Just from drawing simple, straight lines.

Now I can change my perspective
a little bit. I can rotate it.

Have a look at the curve.

What does it look like?

Is it a part of a circle?

It’s actually not a part of a circle.

So I have to continue my investigation
and look for the true pattern.

Perhaps if I copy it and make some art?

Well, no.

Perhaps I should extend
the lines like this,

and look for the pattern there.

Let’s make more lines.

We do this.

And then let’s zoom out
and change our perspective again.

Then we can actually see that
what started out as just straight lines

is actually a curve called a parabola.

This is represented by a simple equation,

and it’s a beautiful pattern.

So this is the stuff that we do.

We find patterns, and we represent them.

And I think this is a nice
day-to-day definition.

But today I want to go
a little bit deeper,

and think about
what the nature of this is.

What makes it possible?

There’s one thing
that’s a little bit deeper,

and that has to do with the ability
to change your perspective.

And I claim that when
you change your perspective,

and if you take another point of view,

you learn something new
about what you are watching

or looking at or hearing.

And I think this is a really important
thing that we do all the time.

So let’s just look at
this simple equation,

x + x = 2 • x.

This is a very nice pattern,
and it’s true,

because 5 + 5 = 2 • 5, etc.

We’ve seen this over and over,
and we represent it like this.

But think about it: this is an equation.

It says that something
is equal to something else,

and that’s two different perspectives.

One perspective is, it’s a sum.

It’s something you plus together.

On the other hand, it’s a multiplication,

and those are two different perspectives.

And I would go as far as to say
that every equation is like this,

every mathematical equation
where you use that equality sign

is actually a metaphor.

It’s an analogy between two things.

You’re just viewing something
and taking two different points of view,

and you’re expressing that in a language.

Have a look at this equation.

This is one of the most
beautiful equations.

It simply says that, well,

two things, they’re both -1.

This thing on the left-hand side is -1,
and the other one is.

And that, I think, is one
of the essential parts

of mathematics – you take
different points of view.

So let’s just play around.

Let’s take a number.

We know four-thirds.
We know what four-thirds is.

It’s 1.333, but we have to have
those three dots,

otherwise it’s not exactly four-thirds.

But this is only in base 10.

You know, the number system,
we use 10 digits.

If we change that around
and only use two digits,

that’s called the binary system.

It’s written like this.

So we’re now talking about the number.

The number is four-thirds.

We can write it like this,

and we can change the base,
change the number of digits,

and we can write it differently.

So these are all representations
of the same number.

We can even write it simply,
like 1.3 or 1.6.

It all depends on
how many digits you have.

Or perhaps we just simplify
and write it like this.

I like this one, because this says
four divided by three.

And this number expresses
a relation between two numbers.

You have four on the one hand
and three on the other.

And you can visualize this in many ways.

What I’m doing now is viewing that number
from different perspectives.

I’m playing around.

I’m playing around with
how we view something,

and I’m doing it very deliberately.

We can take a grid.

If it’s four across and three up,
this line equals five, always.

It has to be like this.
This is a beautiful pattern.

Four and three and five.

And this rectangle, which is 4 x 3,

you’ve seen a lot of times.

This is your average computer screen.

800 x 600 or 1,600 x 1,200

is a television or a computer screen.

So these are all nice representations,

but I want to go a little bit further
and just play more with this number.

Here you see two circles.
I’m going to rotate them like this.

Observe the upper-left one.

It goes a little bit faster, right?

You can see this.

It actually goes exactly
four-thirds as fast.

That means that when it goes
around four times,

the other one goes around three times.

Now let’s make two lines, and draw
this dot where the lines meet.

We get this dot dancing around.

(Laughter)

And this dot comes from that number.

Right? Now we should trace it.

Let’s trace it and see what happens.

This is what mathematics is all about.

It’s about seeing what happens.

And this emerges from four-thirds.

I like to say that this
is the image of four-thirds.

It’s much nicer – (Cheers)

Thank you!

(Applause)

This is not new.

This has been known
for a long time, but –

(Laughter)

But this is four-thirds.

Let’s do another experiment.

Let’s now take a sound, this sound: (Beep)

This is a perfect A, 440Hz.

Let’s multiply it by two.

We get this sound. (Beep)

When we play them together,
it sounds like this.

This is an octave, right?

We can do this game. We can play
a sound, play the same A.

We can multiply it by three-halves.

(Beep)

This is what we call a perfect fifth.

(Beep)

They sound really nice together.

Let’s multiply this sound
by four-thirds. (Beep)

What happens?

You get this sound. (Beep)

This is the perfect fourth.

If the first one is an A, this is a D.

They sound like this together. (Beeps)

This is the sound of four-thirds.

What I’m doing now,
I’m changing my perspective.

I’m just viewing a number
from another perspective.

I can even do this with rhythms, right?

I can take a rhythm and play
three beats at one time (Drumbeats)

in a period of time,

and I can play another sound
four times in that same space.

(Clanking sounds)

Sounds kind of boring,
but listen to them together.

(Drumbeats and clanking sounds)

(Laughter)

Hey! So.

(Laughter)

I can even make a little hi-hat.

(Drumbeats and cymbals)

Can you hear this?

So, this is the sound of four-thirds.

Again, this is as a rhythm.

(Drumbeats and cowbell)

And I can keep doing this
and play games with this number.

Four-thirds is a really great number.
I love four-thirds!

(Laughter)

Truly – it’s an undervalued number.

So if you take a sphere and look
at the volume of the sphere,

it’s actually four-thirds
of some particular cylinder.

So four-thirds is in the sphere.
It’s the volume of the sphere.

OK, so why am I doing all this?

Well, I want to talk about what it means
to understand something

and what we mean
by understanding something.

That’s my aim here.

And my claim is that
you understand something

if you have the ability to view it
from different perspectives.

Let’s look at this letter.
It’s a beautiful R, right?

How do you know that?

Well, as a matter of fact,
you’ve seen a bunch of R’s,

and you’ve generalized

and abstracted all of these
and found a pattern.

So you know that this is an R.

So what I’m aiming for here
is saying something

about how understanding
and changing your perspective

are linked.

And I’m a teacher and a lecturer,

and I can actually use this
to teach something,

because when I give someone else
another story, a metaphor, an analogy,

if I tell a story
from a different point of view,

I enable understanding.

I make understanding possible,

because you have to generalize
over everything you see and hear,

and if I give you another perspective,
that will become easier for you.

Let’s do a simple example again.

This is four and three.
This is four triangles.

So this is also four-thirds, in a way.

Let’s just join them together.

Now we’re going to play a game;
we’re going to fold it up

into a three-dimensional structure.

I love this.

This is a square pyramid.

And let’s just take two of them
and put them together.

So this is what is called an octahedron.

It’s one of the five platonic solids.

Now we can quite literally
change our perspective,

because we can rotate it
around all of the axes

and view it from different perspectives.

And I can change the axis,

and then I can view it
from another point of view,

but it’s the same thing,
but it looks a little different.

I can do it even one more time.

Every time I do this,
something else appears,

so I’m actually learning
more about the object

when I change my perspective.

I can use this as a tool
for creating understanding.

I can take two of these
and put them together like this

and see what happens.

And it looks a little bit
like the octahedron.

Have a look at it if I spin
it around like this.

What happens?

Well, if you take two of these,
join them together and spin it around,

there’s your octahedron again,

a beautiful structure.

If you lay it out flat on the floor,

this is the octahedron.

This is the graph structure
of an octahedron.

And I can continue doing this.

You can draw three great circles
around the octahedron,

and you rotate around,

so actually three great circles
is related to the octahedron.

And if I take a bicycle pump
and just pump it up,

you can see that this is also
a little bit like the octahedron.

Do you see what I’m doing here?

I am changing the perspective every time.

So let’s now take a step back –

and that’s actually
a metaphor, stepping back –

and have a look at what we’re doing.

I’m playing around with metaphors.

I’m playing around
with perspectives and analogies.

I’m telling one story in different ways.

I’m telling stories.

I’m making a narrative;
I’m making several narratives.

And I think all of these things
make understanding possible.

I think this actually is the essence
of understanding something.

I truly believe this.

So this thing about changing
your perspective –

it’s absolutely fundamental for humans.

Let’s play around with the Earth.

Let’s zoom into the ocean,
have a look at the ocean.

We can do this with anything.

We can take the ocean
and view it up close.

We can look at the waves.

We can go to the beach.

We can view the ocean
from another perspective.

Every time we do this, we learn
a little bit more about the ocean.

If we go to the shore,
we can kind of smell it, right?

We can hear the sound of the waves.

We can feel salt on our tongues.

So all of these
are different perspectives.

And this is the best one.

We can go into the water.

We can see the water from the inside.

And you know what?

This is absolutely essential
in mathematics and computer science.

If you’re able to view
a structure from the inside,

then you really learn something about it.

That’s somehow the essence of something.

So when we do this,
and we’ve taken this journey

into the ocean,

we use our imagination.

And I think this is one level deeper,

and it’s actually a requirement
for changing your perspective.

We can do a little game.

You can imagine that you’re sitting there.

You can imagine that you’re up here,
and that you’re sitting here.

You can view yourselves from the outside.

That’s really a strange thing.

You’re changing your perspective.

You’re using your imagination,

and you’re viewing yourself
from the outside.

That requires imagination.

Mathematics and computer science
are the most imaginative art forms ever.

And this thing about changing perspectives

should sound a little bit familiar to you,

because we do it every day.

And then it’s called empathy.

When I view the world
from your perspective,

I have empathy with you.

If I really, truly understand

what the world looks
like from your perspective,

I am empathetic.

That requires imagination.

And that is how we obtain understanding.

And this is all over mathematics
and this is all over computer science,

and there’s a really deep connection
between empathy and these sciences.

So my conclusion is the following:

understanding something really deeply

has to do with the ability
to change your perspective.

So my advice to you is:
try to change your perspective.

You can study mathematics.

It’s a wonderful way to train your brain.

Changing your perspective
makes your mind more flexible.

It makes you open to new things,

and it makes you
able to understand things.

And to use yet another metaphor:

have a mind like water.

That’s nice.

Thank you.

(Applause)

你好。

我想谈谈理解

,理解的本质,理解的本质

是什么,因为理解是
我们的目标,每个人。

我们想了解事物。

我的主张是,理解

与改变观点的能力有关

如果你没有这个,
你就没有理解。

这就是我的主张。

我想专注于数学。

我们中的许多人认为数学
是加法、减法、

乘法、除法、

分数、百分比、几何、
代数——所有这些东西。

但实际上,我也想
谈谈数学的本质。

我的主张是
数学与模式有关。

在我身后,你看到了一个美丽的图案,

而这个图案实际上是
从画圆

中以一种非常特殊的方式出现的。

所以我每天使用的数学

定义如下:

首先,它是关于寻找模式。

我所说的“模式”是指一种联系、
一种结构、某种

规律性、一些支配我们所见事物的规则。

其次,

我认为这是关于
用一种语言来表示这些模式。

如果我们没有语言,我们就会自己编造语言,

而在数学中,这是必不可少的。

这也是关于做出假设

并玩弄这些假设,
然后看看会发生什么。

我们很快就会这样做。

最后,它是关于做一些很酷的事情。

数学使我们
能够做很多事情。

那么让我们来看看这些模式。

如果你想打领结,

有图案。

领带结有名字。

你也可以做
领带结的数学。

这是一个左出,右入,
中心出和领带。

这是左进,右出,
左进,中心出和领带。

这是我们为打结的图案编造的一种语言

,半温莎就是这样。

这是一本
关于

大学水平系鞋带的数学书,

因为鞋带上有图案。

你可以用很多不同的方式来做到这一点。

我们可以分析一下。

我们可以为它编造语言。

表示遍及数学。

这是莱布尼茨 1675 年的符号。

他发明了一种
用于自然模式的语言。

当我们把东西扔到空中时,

它就会掉下来。

为什么?

我们不确定,但我们可以
用数学以某种模式来表示这一点。

这也是一种模式。

这也是一种发明的语言。

你能猜到是为了什么吗?

它实际上是一个用于跳舞的符号系统
,用于踢踏舞。

这使他作为一个编舞者
能够做很酷的事情,做新的事情,

因为他已经代表了它。

我想让你想一想,
实际上代表某事是多么令人惊奇。

这里说的是“数学”这个词。

但实际上,它们只是点,对吧?

那么这些点到底是如何
代表这个词的呢?

嗯,他们做到了。

它们代表“数学”这个词

,这些符号也代表那个词

,我们可以听到这个词。

听起来像这样。

(哔哔声)

不知何故,这些声音代表
了单词和概念。

这是怎么发生的?

代表东西有一些令人
惊奇的事情。

所以我想谈谈

当我们实际代表某物时发生的魔法。

在这里,您只看到
不同宽度的线条。

它们
代表特定书籍的数字。

我实际上可以推荐
这本书,这是一本非常好的书。

(笑声)

相信我。

好的,所以让我们做一个实验,

只是为了
玩一些直线。

这是一条直线。

让我们再做一个。

所以每次我们移动时,
我们向下移动一个,

然后我们画一条新的直线,对吗?

我们一遍又一遍地这样做

,我们寻找模式。

所以这个模式就出现了

,这是一个相当不错的模式。

它看起来像一条曲线,对吧?

只需绘制简单的直线即可。

现在我可以稍微改变一下我的
观点。 我可以旋转它。

看看曲线。

它是什么样子的?

它是一个圆圈的一部分吗?

它实际上不是一个圆圈的一部分。

所以我必须继续我的调查
并寻找真正的模式。

也许如果我复制它并制作一些艺术?

嗯,不。

也许我应该
像这样延长线条,

并在那里寻找模式。

让我们多画几行。

我们这样做。

然后让我们缩小
并再次改变我们的观点。

然后我们实际上可以看到
,最初只是直线

的实际上是一条称为抛物线的曲线。

这由一个简单的方程式表示

,这是一个美丽的模式。

这就是我们要做的事情。

我们发现模式,并代表它们。

我认为这是一个很好
的日常定义。

但今天我想
更深入一点

,想一想它
的本质是什么。

是什么让它成为可能?

有一件事
更深层次,

这与改变你的观点的能力有关

我声称当
你改变你的观点

,如果你换一种观点,

你会学到一些
关于你正在观看

或观看或听到的东西的新东西。

我认为这
是我们一直在做的一件非常重要的事情。

所以让我们看看
这个简单的方程,

x + x = 2 • x。

这是一个非常好的模式,
而且是真的,

因为 5 + 5 = 2 • 5 等等。

我们一遍又一遍地看到这个
,我们这样表示它。

但是想一想:这是一个等式。

它说某物
等于其他东西

,这是两种不同的观点。

一种观点是,它是一个总和。

这是你加在一起的东西。

另一方面,它是一个乘法

,这是两个不同的观点。

我什至会
说每个方程都是这样的,

每个使用等号

的数学方程实际上都是一个隐喻。

这是两件事之间的类比。

你只是在看一些东西
并采取两种不同的观点,

然后你用一种语言来表达它。

看看这个等式。

这是最
美丽的方程式之一。

它只是说,嗯,有

两件事,它们都是-1。

左边这个东西是-1
,另一个是。

我认为,这是数学
的重要组成部分

之一——你有
不同的观点。

所以让我们随便玩玩吧。

让我们取一个数字。

我们知道三分之四。
我们知道三分之四是什么。

它是 1.333,但我们必须有
这三个点,

否则它不完全是三分之四。

但这只是以 10 为基数。

你知道,数字系统,
我们使用 10 位数字。

如果我们改变它
并且只使用两位数,

这就是所谓的二进制系统。

是这样写的。

所以我们现在谈论的是数字。

这个数字是三分之四。

我们可以这样写

,我们可以改变基数,
改变位数

,我们可以用不同的方式来写。

所以这些都是
同一个数字的表示。

我们甚至可以简单地写它,
比如 1.3 或 1.6。

这完全取决于
你有多少位数。

或者也许我们只是简化
并像这样编写它。

我喜欢这个,因为这表示
四除以三。

这个数字表达
了两个数字之间的关系。

一方面有四个,
另一方面有三个。

您可以通过多种方式对此进行可视化。

我现在正在做的是
从不同的角度看待这个数字。

我在玩。

我正在玩弄
我们如何看待某事,

而且我非常刻意地这样做。

我们可以拿一个网格。

如果它是四横三上,
这条线总是等于五。

它必须是这样的。
这是一个美丽的图案。

四三五。

而这个 4 x 3 的矩形,

你已经见过很多次了。

这是您的平均计算机屏幕。

800 x 600 或 1,600 x 1,200

是电视或电脑屏幕。

所以这些都是很好的表示,

但我想更进一步
,更多地使用这个数字。

在这里你可以看到两个圆圈。
我将像这样旋转它们。

观察左上角。

它会快一点,对吧?

你可以看到这个。

它实际上
快了三分之四。

这意味着当它
转四次时

,另一个转三倍。

现在让我们画两条线,并
在两条线相交的地方画出这个点。

我们让这个点在周围跳舞。

(笑声)

而这个点来自那个数字。

对? 现在我们应该追踪它。

让我们追踪它,看看会发生什么。

这就是数学的全部意义所在。

这是关于看看会发生什么。

这来自三分之四。

我喜欢说这
是三分之四的形象。

好多了——(干杯)

谢谢!

(掌声)

这不是什么新鲜事。


早已为人所知,但是——

(笑声)

但这是三分之四。

让我们再做一个实验。

现在让我们来听一个声音,这个声音:(哔)

这是一个完美的A,440Hz。

让我们将它乘以 2。

我们得到这个声音。 (哔)

当我们一起演奏时,
听起来像这样。

这是一个八度,对吧?

我们可以做这个游戏。 我们可以播放
一个声音,播放相同的 A。

我们可以将它乘以三分之二。

(哔)

这就是我们所说的完美五度。

(哔)

他们在一起听起来很不错。

让我们把这个声音
乘以三分之四。 (哔)

会发生什么?

你得到这个声音。 (哔)

这是完美的第四个。

如果第一个是 A,这是一个 D。

它们听起来像这样。 (哔)

这是三分之四的声音。

我现在在做什么,
我正在改变我的观点。

我只是
从另一个角度来看一个数字。

我什至可以用节奏来做到这一点,对吧?

我可以带节奏并
在一段时间内一次演奏三个节拍(Drumbeats)

,我可以
在同一空间内演奏四次另一种声音。

(叮当声)

听起来有点无聊,
但一起听。

(鼓声和叮当声)

(笑声)

嘿! 所以。

(笑声)

我什至可以做一个小踩镲。

(鼓声和铙钹)

你能听到吗?

所以,这是三分之四的声音。

同样,这是一种节奏。

(鼓点和牛铃)

我可以继续这样做
,用这个号码玩游戏。

三分之四是一个非常大的数字。
我爱三分之四!

(笑声)

真的——这是一个被低估的数字。

所以如果你拿一个球体看球体
的体积,

它实际上
是某个特定圆柱体的三分之四。

所以三分之四在球体中。
这是球体的体积。

好吧,那我为什么要做这一切?

好吧,我想谈谈
理解某

事意味着什么,以及我们
理解某事意味着什么。

这就是我在这里的目标。

我的主张是,

如果你有能力
从不同的角度看待它,你就会理解一些东西。

让我们看看这封信。
这是一个美丽的R,对吧?

你怎么知道?

好吧,事实上,
你已经看到了一堆 R,

并且你已经概括

和抽象了所有这些
并找到了一个模式。

所以你知道这是一个 R。

所以我在这里的目标
是说一些

关于理解
和改变你的观点

是如何联系在一起的。

我是一名教师和讲师

,我实际上可以用它
来教一些东西,

因为当我给别人
另一个故事、一个隐喻、一个类比时,

如果我
从不同的角度讲述一个故事,

我就能理解 .

我让理解成为可能,

因为你必须概括
你所看到和听到的一切

,如果我给你另一个视角,
那对你来说会变得更容易。

让我们再做一个简单的例子。

这是四和三。
这是四个三角形。

所以这在某种程度上也是三分之四。

让我们一起加入他们。

现在我们要玩一个游戏;
我们将把它折叠

成一个三维结构。

我喜欢这个。

这是一个方形金字塔。

让我们
把它们中的两个放在一起。

所以这就是所谓的八面体。

它是五个柏拉图立体之一。

现在我们可以从字面上
改变我们的视角,

因为我们可以
围绕所有轴旋转它

并从不同的角度查看它。

我可以改变轴,

然后我可以
从另一个角度来看它,

但它是相同的东西,
但它看起来有点不同。

我可以再做一次。

每次我这样做时,都会
出现其他东西,

所以当我改变视角时,我实际上是在
更多地了解这个对象

我可以将其
用作创建理解的工具。

我可以把其中的两个
像这样放在一起

,看看会发生什么。

它看起来有点
像八面体。

如果我
像这样旋转它,看看它。

怎么了?

好吧,如果你拿其中两个,
将它们连接在一起并旋转它

,你的八面体又是

一个美丽的结构。

如果你把它平放在地板上,

这就是八面体。


是八面体的图结构。

我可以继续这样做。

你可以
在八面体周围画三个大圆,

然后你旋转,

所以实际上三个大圆
和八面体有关。

如果我拿一个自行车打
气筒然后把它打起来,

你可以看到这也
有点像八面体。

你看到我在这里做什么了吗?

我每次都在改变视角。

所以现在让我们退后一步

——这实际上是
一个隐喻,退后一步

——看看我们在做什么。

我在玩比喻。

我在
玩各种观点和类比。

我以不同的方式讲述一个故事。

我在讲故事。

我在做一个叙述;
我正在制作几个故事。

我认为所有这些都
使理解成为可能。

我认为这实际上
是理解某事的本质。

我真的相信这一点。

所以关于改变
你的观点的事情——

这对人类来说绝对是根本的。

让我们玩弄地球。

让我们放大海洋
,看看海洋。

我们可以用任何东西做到这一点。

我们可以拍摄海洋
并近距离观察它。

我们可以看看海浪。

我们可以去海滩。

我们可以
从另一个角度看海洋。

每次我们这样做,我们都会
更多地了解海洋。

如果我们去岸边,
我们可以闻到它的味道,对吧?

我们可以听到海浪的声音。

我们可以感觉到舌头上的盐分。

所以所有这些
都是不同的观点。

这是最好的。

我们可以下水了。

我们可以从里面看到水。

你知道吗?


在数学和计算机科学中是绝对必要的。

如果您能够
从内部查看结构,

那么您就真的学到了一些东西。

这就是某种事物的本质。

因此,当我们这样做时
,我们已经踏上了

进入海洋的旅程,

我们会运用我们的想象力。

我认为这是更深层次的

,实际上是
改变你的观点的要求。

我们可以做一个小游戏。

你可以想象你正坐在那里。

你可以想象你在这里
,你坐在这里。

你可以从外面看到自己。

这真是一件奇怪的事情。

你正在改变你的观点。

你在运用你的想象力

,你在
从外面看自己。

这需要想象力。

数学和计算机科学
是有史以来最具想象力的艺术形式。

关于改变观点的事情

你应该听起来有点熟悉,

因为我们每天都在这样做。

然后它被称为同理心。

当我
从你的角度看世界时,

我对你有同理心。

如果我真的,真的从你的角度

理解这个世界是什么样子的

我会感同身受。

这需要想象力。

这就是我们获得理解的方式。

这完全是数学
和计算机科学,同理心

和这些科学之间有着非常深刻的联系

所以我的结论如下:

真正深刻地理解某件事

与改变观点的能力有关

所以我给你的建议是:
试着改变你的观点。

你可以学习数学。

这是训练大脑的好方法。

改变你的观点
会让你的头脑更灵活。

它让你对新事物持开放态度

,它让你
能够理解事物。

再用一个比喻

:心如水。

那很好。

谢谢你。

(掌声)