The magic ingredient that brings Pixar movies to life Danielle Feinberg

When I was seven years old,

some well-meaning adult asked me
what I wanted to be when I grew up.

Proudly, I said: “An artist.”

“No, you don’t,” he said,

“You can’t make a living being an artist!”

My little seven-year-old
Picasso dreams were crushed.

But I gathered myself,

went off in search of a new dream,

eventually settling on being a scientist,

perhaps something like
the next Albert Einstein.

(Laughter)

I have always loved math and science,

later, coding.

And so I decided to study
computer programming in college.

In my junior year,

my computer graphics professor
showed us these wonderful short films.

It was the first computer animation
any of us had ever seen.

I watched these films
in wonder, transfixed,

fireworks going off in my head,

thinking, “That is what
I want to do with my life.”

The idea that all the math, science
and code I had been learning

could come together to create
these worlds and characters

and stories I connected with,

was pure magic for me.

Just two years later, I started working

at the place that made those films,
Pixar Animation Studios.

It was here I learned how
we actually execute those films.

To create our movies,

we create a three-dimensional
world inside the computer.

We start with a point that makes
a line that makes a face

that creates characters,

or trees and rocks
that eventually become a forest.

And because it’s
a three-dimensional world,

we can move a camera
around inside that world.

I was fascinated by all of it.

But then I got my first taste of lighting.

Lighting in practice is placing lights
inside this three-dimensional world.

I actually have icons of lights
I move around in there.

Here you can see I’ve added a light,

I’m turning on the rough version
of lighting in our software,

turn on shadows

and placing the light.

As I place a light,

I think about what it might
look like in real life,

but balance that out with what we need
artistically and for the story.

So it might look like this at first,

but as we adjust this and move that

in weeks of work,

in rough form it might look like this,

and in final form, like this.

There’s this moment in lighting
that made me fall utterly in love with it.

It’s where we go from this

to this.

It’s the moment where
all the pieces come together,

and suddenly the world comes to life

as if it’s an actual place that exists.

This moment never gets old,

especially for that little seven-year-old
girl that wanted to be an artist.

As I learned to light,

I learned about using light
to help tell story,

to set the time of day,

to create the mood,

to guide the audience’s eye,

how to make a character look appealing

or stand out in a busy set.

Did you see WALL-E?

(Laughter)

There he is.

As you can see,

we can create any world that we want
inside the computer.

We can make a world with monsters,

with robots that fall in love,

we can even make pigs fly.

(Laughter)

While this is an incredible thing,

this untethered artistic freedom,

it can create chaos.

It can create unbelievable worlds,

unbelievable movement,

things that are jarring to the audience.

So to combat this, we tether
ourselves with science.

We use science and the world we know

as a backbone,

to ground ourselves in something
relatable and recognizable.

“Finding Nemo” is an excellent
example of this.

A major portion of the movie
takes place underwater.

But how do you make it look underwater?

In early research and development,

we took a clip of underwater footage
and recreated it in the computer.

Then we broke it back down

to see which elements make up
that underwater look.

One of the most critical elements

was how the light travels
through the water.

So we coded up a light
that mimics this physics –

first, the visibility of the water,

and then what happens with the color.

Objects close to the eye
have their full, rich colors.

As light travels deeper into the water,

we lose the red wavelengths,

then the green wavelengths,

leaving us with blue at the far depths.

In this clip you can see
two other important elements.

The first is the surge and swell,

or the invisible underwater current

that pushes the bits of particulate
around in the water.

The second is the caustics.

These are the ribbons of light,

like you might see
on the bottom of a pool,

that are created when the sun
bends through the crests

of the ripples and waves
on the ocean’s surface.

Here we have the fog beams.

These give us color depth cues,

but also tells which direction is up

in shots where we don’t
see the water surface.

The other really cool thing
you can see here

is that we lit that particulate
only with the caustics,

so that as it goes in and out
of those ribbons of light,

it appears and disappears,

lending a subtle, magical
sparkle to the underwater.

You can see how we’re using the science –

the physics of water,
light and movement –

to tether that artistic freedom.

But we are not beholden to it.

We considered each of these elements

and which ones had to be
scientifically accurate

and which ones we could push and pull
to suit the story and the mood.

We realized early on that color
was one we had some leeway with.

So here’s a traditionally colored
underwater scene.

But here, we can take Sydney Harbor
and push it fairly green

to suit the sad mood of what’s happening.

In this scene, it’s really important
we see deep into the underwater,

so we understand what
the East Australian Current is,

that the turtles are diving into
and going on this roller coaster ride.

So we pushed the visibility of the water

well past anything you would
ever see in real life.

Because in the end,

we are not trying to recreate
the scientifically correct real world,

we’re trying to create a believable world,

one the audience can immerse
themselves in to experience the story.

We use science to create
something wonderful.

We use story and artistic touch
to get us to a place of wonder.

This guy, WALL-E, is a great
example of that.

He finds beauty in the simplest things.

But when he came in to lighting,
we knew we had a big problem.

We got so geeked-out on making
WALL-E this convincing robot,

that we made his binoculars
practically optically perfect.

(Laughter)

His binoculars are one of the most
critical acting devices he has.

He doesn’t have a face or even
traditional dialogue, for that matter.

So the animators were heavily
dependent on the binoculars

to sell his acting and emotions.

We started lighting and we realized

the triple lenses inside his binoculars
were a mess of reflections.

He was starting to look glassy-eyed.

(Laughter)

Now, glassy-eyed
is a fundamentally awful thing

when you are trying
to convince an audience

that a robot has a personality
and he’s capable of falling in love.

So we went to work on these optically
perfect binoculars,

trying to find a solution that would
maintain his true robot materials

but solve this reflection problem.

So we started with the lenses.

Here’s the flat-front lens,

we have a concave lens

and a convex lens.

And here you see all three together,

showing us all these reflections.

We tried turning them down,

we tried blocking them,

nothing was working.

You can see here,

sometimes we needed something specific
reflected in his eyes –

usually Eve.

So we couldn’t just use some faked
abstract image on the lenses.

So here we have Eve on the first lens,

we put Eve on the second lens,

it’s not working.

We turn it down,

it’s still not working.

And then we have our eureka moment.

We add a light to WALL-E
that accidentally leaks into his eyes.

You can see it light up
these gray aperture blades.

Suddenly, those aperture blades
are poking through that reflection

the way nothing else has.

Now we recognize WALL-E as having an eye.

As humans we have the white of our eye,

the colored iris

and the black pupil.

Now WALL-E has the black of an eye,

the gray aperture blades

and the black pupil.

Suddenly, WALL-E feels like he has a soul,

like there’s a character
with emotion inside.

Later in the movie towards the end,

WALL-E loses his personality,

essentially going dead.

This is the perfect time to bring back
that glassy-eyed look.

In the next scene,
WALL-E comes back to life.

We bring that light back to bring
the aperture blades back,

and he returns to that sweet,
soulful robot we’ve come to love.

(Video) WALL-E: Eva?

Danielle Feinberg: There’s a beauty
in these unexpected moments –

when you find the key
to unlocking a robot’s soul,

the moment when you discover
what you want to do with your life.

The jellyfish in “Finding Nemo”
was one of those moments for me.

There are scenes in every movie
that struggle to come together.

This was one of those scenes.

The director had a vision for this scene

based on some wonderful footage
of jellyfish in the South Pacific.

As we went along,

we were floundering.

The reviews with the director

turned from the normal
look-and-feel conversation

into more and more questions
about numbers and percentages.

Maybe because unlike normal,

we were basing it on
something in real life,

or maybe just because we had lost our way.

But it had become about using
our brain without our eyes,

the science without the art.

That scientific tether
was strangling the scene.

But even through all the frustrations,

I still believed it could be beautiful.

So when it came in to lighting,

I dug in.

As I worked to balance
the blues and the pinks,

the caustics dancing
on the jellyfish bells,

the undulating fog beams,

something promising began to appear.

I came in one morning and checked
the previous night’s work.

And I got excited.

And then I showed it
to the lighting director

and she got excited.

Soon, I was showing to the director
in a dark room full of 50 people.

In director review,

you hope you might get some nice words,

then you get some notes
and fixes, generally.

And then, hopefully, you get a final,

signaling to move on to the next stage.

I gave my intro, and I played
the jellyfish scene.

And the director was silent
for an uncomfortably long amount of time.

Just long enough for me to think,

“Oh no, this is doomed.”

And then he started clapping.

And then the production
designer started clapping.

And then the whole room was clapping.

This is the moment
that I live for in lighting.

The moment where it all comes together

and we get a world that we can believe in.

We use math, science and code
to create these amazing worlds.

We use storytelling and art
to bring them to life.

It’s this interweaving of art and science

that elevates the world
to a place of wonder,

a place with soul,

a place we can believe in,

a place where the things
you imagine can become real –

and a world where a girl suddenly realizes

not only is she a scientist,

but also an artist.

Thank you.

(Applause)

在我七岁的时候,

一个好心的大人
问我长大后想做什么。

我自豪地说:“艺术家。”

“不,你没有,”他说,

“你不能以艺术家为生!”

我七岁的
毕加索小梦想破灭了。

但我振作起来,

开始寻找新的梦想,

最终决定成为一名科学家,

也许
就像下一个阿尔伯特爱因斯坦一样。

(笑声)

我一直喜欢数学和科学,

后来,编码。

所以我决定
在大学学习计算机编程。

在我大三的时候,

我的计算机图形学教授
向我们展示了这些精彩的短片。

这是我们任何人见过的第一部电脑动画


惊奇地看着这些电影,惊呆了,

烟花在我的脑海中燃烧,

心想,“这就是
我想用我的生命做的事情。”

我一直在学习的所有数学、科学和代码

可以汇集在一起,创造出

我与之相关的这些世界、角色和故事,

这对我来说简直就是魔法。

仅仅两年后,我开始

在制作这些电影的地方——
皮克斯动画工作室工作。

正是在这里,我了解了
我们如何实际执行这些电影。

为了制作我们的电影,

我们在计算机内部创建了一个 3D
世界。

我们从一个点开始,画出
一条线,创造出人物的脸

或者
最终变成森林的树木和岩石。

因为它是
一个三维世界,

我们可以
在这个世界中移动相机。

我被这一切迷住了。

但后来我第一次尝到了照明的味道。

实践中的照明就是
在这个三维世界中放置灯光。

我实际上有
我在那里移动的灯光图标。

在这里你可以看到我添加了一个灯光,


在我们的软件中打开了粗略版本的灯光,

打开阴影

并放置灯光。

当我放置一盏灯时,

我会思考它
在现实生活中的样子,

但要平衡我们在
艺术上和故事中需要的东西。

所以一开始它可能看起来像这样,

但是当我们

在几周的工作中调整它并移动它时

,粗略的形式可能看起来像这样

,最终的形式看起来像这样。

灯光中的这一刻
让我彻底爱上了它。

这是我们从这个

到这个的地方。

这是
所有碎片聚集在一起的那一刻

,世界突然变得栩栩如生

,就好像它是一个真实存在的地方。

这一刻永远不会变老,

尤其是对于
那个想成为艺术家的七岁小女孩。

在我学习灯光的过程中,

我学会了使用灯光
来帮助讲述故事

、设定时间

、营造氛围

、引导观众的视线,

以及如何让角色看起来很吸引人

或在繁忙的场景中脱颖而出。

你看到瓦力了吗?

(笑声

) 他来了。

如您所见,

我们可以在计算机中创建我们想要的任何世界

我们可以创造一个有怪物的世界,

有坠入爱河的机器人,

我们甚至可以让猪飞起来。

(笑声)

虽然这是一件不可思议的事情,

这种不受束缚的艺术自由,

却会造成混乱。

它可以创造令人难以置信的世界,

令人难以置信的运动,

以及让观众感到震惊的事情。

因此,为了解决这个问题,我们将
自己与科学联系起来。

我们使用科学和我们所知道的世界

作为支柱,

将自己立足于
相关和可识别的事物中。

《海底总动员》就是一个很好的
例子。

电影的主要部分
发生在水下。

但是你怎么让它看起来在水下呢?

在早期的研发中,

我们拍摄了一段水下镜头
并在计算机中重新创建。

然后我们将其分解

,看看哪些元素构成了
这种水下外观。

最关键的元素之一

是光如何
在水中传播。

所以我们编写了
一种模仿这种物理的光——

首先是水的可见性,

然后是颜色的变化。

靠近眼睛的物体
具有饱满、丰富的色彩。

随着光线深入水中,

我们会失去红色波长,

然后是绿色波长,

在最深处留下蓝色。

在此剪辑中,您可以看到
另外两个重要元素。

第一个是浪涌和膨胀,

或者是看不见的水下水流

,它推动水中的
微粒碎片。

第二个是焦散。

这些是光带,

就像您
在水池底部看到的那样,

当太阳
弯曲穿过海洋表面

的波纹和波浪的波峰时产生

这里我们有雾光束。

这些为我们提供了颜色深度提示,

但也告诉

我们看不到水面的镜头中哪个方向是向上的
。 您可以在这里看到

的另一件非常酷的事情

是,我们只用焦散点照亮了那个颗粒

所以当它
进出这些光带时,

它会出现和消失,给

水下带来微妙的神奇
闪光。

你可以看到我们如何利用科学——

水、
光和运动的物理学——

来束缚这种艺术自由。

但我们并不感激它。

我们考虑了这些元素中的每一个,哪些元素

必须在
科学上准确

,哪些元素我们可以推动和拉动
以适应故事和情绪。

我们很早就意识到这种颜色
是我们有一些回旋余地的颜色。

所以这是一个传统的彩色
水下场景。

但是在这里,我们可以将悉尼
港推向绿色,

以适应正在发生的悲伤情绪。

在这个场景中,
我们看到水下深处非常重要,

因此我们
了解东澳大利亚洋流是什么

,海龟正在潜入
并进行过山车之旅。

因此,我们将水的能见度

远远超过了你
在现实生活中看到的任何东西。

因为归根结底,

我们不是在尝试
重现科学正确的现实世界,

而是在尝试创造一个可信的世界

,让观众可以沉浸其中
体验故事。

我们用科学创造
美好的东西。

我们使用故事和艺术
触觉将我们带到一个奇妙的地方。

这个人,WALL-E,就是一个很好的
例子。

他在最简单的事物中发现美。

但是当他进入照明系统时,
我们知道我们遇到了一个大问题。

我们非常热衷于让
WALL-E 成为这个令人信服的机器人,

以至于我们让他的双筒望远镜在
光学上几乎是完美的。

(笑声)

他的双筒望远镜是他最
重要的表演设备之一。

就此而言,他没有脸,甚至没有
传统的对话。

所以动画师非常
依赖双筒望远镜

来推销他的表演和情感。

我们开始照明,我们意识到

他的双筒望远镜内的三重镜片
是一团乱七八糟的反射。

他的眼神开始变得呆滞。

(笑声)

现在,

当你
试图让观众

相信机器人有个性
并且他能够坠入爱河时,呆滞的眼睛从根本上来说是一件可怕的事情。

所以我们开始研究这些光学上
完美的双筒望远镜,

试图找到一种解决方案,既能
保持他真正的机器人材料,

又能解决这个反射问题。

所以我们从镜头开始。

这是平前透镜,

我们有一个凹透镜

和一个凸透镜。

在这里你可以看到所有三个一起,

向我们展示所有这些反射。

我们试图拒绝它们,

我们试图阻止它们,但

没有任何效果。

你可以在这里看到,

有时我们需要一些特定的东西
反映在他的眼睛里——

通常是夏娃。

所以我们不能只在镜头上使用一些伪造的
抽象图像。

所以这里我们将 Eve 放在第一个镜头上,

我们将 Eve 放在第二个镜头上,

它不起作用。

我们拒绝了它,

它仍然无法正常工作。

然后我们有我们的尤里卡时刻。

我们为 WALL-E 添加了一盏灯,
它意外地漏进了他的眼睛。

你可以看到它点亮了
这些灰色光圈叶片。

突然间,那些光圈叶片

其他任何方式都无法穿透反射。

现在我们认识到 WALL-E 是有眼睛的。

作为人类,我们有眼白

、彩色虹膜

和黑色瞳孔。

现在,WALL-E 拥有黑色的眼睛

、灰色的光圈叶片

和黑色的瞳孔。

突然间,WALL-E 感觉自己有了灵魂,

好像里面有一个
有情感的角色。

在电影接近尾声的后期,

瓦力失去了个性,

基本上死了。

这是恢复
那种呆滞眼神的最佳时机。

在下一个场景中,
WALL-E 复活了。

我们把光带回来,
把光圈叶片带回来

,他又回到了
我们爱上的那个甜美、深情的机器人。

(视频)WALL-E:伊娃?

Danielle Feinberg:
这些意想不到的时刻有一种美——

当你
找到解开机器人灵魂

的钥匙时,当你发现
你想用你的生活做什么的那一刻。

“海底总动员”
中的水母对我来说就是其中之一。

每部电影中都有
难以融合的场景。

这是其中一个场景。

导演

根据
南太平洋水母的一些精彩镜头,对这一场景有了设想。

一路走来,

我们都在挣扎。

与导演的评论


正常的观感对话

变成了越来越多
关于数字和百分比的问题。

也许是因为与平常不同,

我们是基于
现实生活中的某些东西,

或者只是因为我们迷路了。

但它已经变成
了没有眼睛使用我们的大脑,

没有艺术的科学。

那个科学系绳
正在扼杀现场。

但即使经历了所有的挫折,

我仍然相信它可以是美丽的。

因此,当涉及到照明时,

我开始研究。

当我努力
平衡蓝色和粉红色时,水母铃上

跳舞的焦散

,起伏的雾光束,

一些有希望的东西开始出现。

一天早上我进来检查
了前一天晚上的工作。

我很兴奋。

然后我把它展示
给灯光总监

,她很兴奋。

很快,我就
在一个全是 50 人的黑屋子里给导演看。

在director review中,

你希望你能得到一些好话,

然后你通常会得到一些注释
和修复。

然后,希望你得到一个决赛,

发出进入下一阶段的信号。

我做了介绍,我演奏
了水母场景。

导演
沉默了很长一段时间。

足够长的时间让我想,

“哦,不,这是注定的。”

然后他开始鼓掌。

然后制作
设计师开始鼓掌。

然后整个房间都在鼓掌。


是我生活在照明中的时刻。

当一切融合在一起

,我们得到了一个我们可以相信的世界。

我们使用数学、科学和代码
来创造这些令人惊叹的世界。

我们使用讲故事和
艺术使它们栩栩如生。

正是这种艺术与科学的交织

将世界提升
到了一个奇妙

的地方,一个有灵魂

的地方,一个我们可以相信

的地方,一个
你想象的东西可以变成现实的

地方——一个女孩突然意识到的世界

她不仅是科学家,

还是艺术家。

谢谢你。

(掌声)