The material that could change the world... for a third time

Thousands of years ago,
the Romans invented a material

that allowed them to build
much of their sprawling civilization.

Pliny the Elder praised an imposing
sea wall made from the stuff

as “impregnable to the waves
and every day stronger.”

He was right: much of this construction
still stands,

having survived millennia of battering
by environmental forces

that would topple modern buildings.

Today, our roads, sidewalks, bridges,
and skyscrapers

are made of a similar, though
less durable, material called concrete.

There’s three tons of it for every person
on Earth.

And over the next 40 years,
we’ll use enough of it

to build the equivalent of New York City
every single month.

Concrete has shaped our skylines,

but that’s not the only way
it’s changed our world.

It’s also played a surprisingly large role
in rising global temperatures

over the last century,

a trend that has already
changed the world,

and threatens to even more drastically
in the coming decades.

To be fair to concrete, basically
everything humanity does

contributes to the greenhouse gas
emissions that cause global warming.

Most of those emissions come
from industrial processes

we often aren’t aware of,
but touch every aspect of our lives.

Look around your home.

Refrigeration—
along with other heating and cooling—

makes up about 6% of total emissions.

Agriculture, which produces our food,
accounts for 18%.

Electricity is responsible for 27%.

Walk outside, and the cars zipping past,
planes overhead,

trains ferrying commuters to work—

transportation, including shipping,

contributes 16%
of greenhouse gas emissions.

Even before we use any of these things,
making them produces emissions—

a lot of emissions.

Making materials—

concrete, steel, plastic, glass,
aluminum and everything else—

accounts for 31%
of greenhouse gas emissions.

Concrete alone is responsible for 8%
of all carbon emissions worldwide.

And it’s much more difficult to reduce
the emissions from concrete

than from other building materials.

The problem is cement,
one of the four ingredients in concrete.

It holds the other three ingredients—
gravel, sand, and water— together.

Unfortunately, it’s impossible to make
cement without generating carbon dioxide.

The essential ingredient in cement
is calcium oxide, CaO.

We get that calcium oxide from limestone,

which is mostly made of calcium carbonate:
CaCO3.

We extract CaO from CaCO3
by heating limestone.

What’s left is CO2— carbon dioxide.

So for every ton of cement we produce,
we release one ton of carbon dioxide.

As tricky as this problem is,

it means concrete could help
us change the world a third time:

by eliminating greenhouse gas emissions
and stabilizing our climate.

Right now, there’s no 100% clean concrete,

but there are some great ideas
to help us get there.

Cement manufacturing also produces
greenhouse gas emissions

by burning fossil fuels
to heat the limestone.

Heating the limestone with clean
electricity or alternative fuels instead

would eliminate those emissions.

For the carbon dioxide from
the limestone itself,

our best bet is carbon capture:

specifically, capturing the carbon
right where it’s produced,

before it enters the atmosphere.

Devices that do this already exist,

but they aren’t widely used because
there’s no economic incentive.

Transporting and then storing
the captured carbon can be expensive.

To solve these problems,

one company has found a way to store
captured CO2 permanently

in the concrete itself.

Other innovators are tinkering with
the fundamental chemistry of concrete.

Some are investigating ways
to reduce emissions

by decreasing the cement in concrete.

Still others have been working
to uncover and replicate

the secrets of Roman concrete.

They found that Pliny’s remark
is literally true.

The Romans used volcanic ash
in their cement.

When the ash interacted with seawater,
the seawater strengthened it—

making their concrete stronger and more
long-lasting than any we use today.

By adding these findings to an arsenal
of modern innovations,

hopefully we can replicate their success—

both by making long lasting structures,

and ensuring our descendants can admire
them thousands of years from now.

数千年前
,罗马人发明了一种材料

,使他们能够
建立起庞大的文明。

老普林尼称赞
由这种材料制成的宏伟海堤

“不惧海浪,
而且一天比一天强大”。

他是对的:这座建筑的大部分
仍然屹立不倒

,经受了数千年

将现代建筑推倒的环境力量的打击。

今天,我们的道路、人行道、桥梁
和摩天大楼

都是由一种类似但
不太耐用的材料制成的,称为混凝土。 地球

上每个人都有三吨

在接下来的 40 年里,
我们每个月都会用它

来建造相当于纽约市的建筑

混凝土塑造了我们的天际线,

但这并不是
它改变我们世界的唯一方式。

它在上个世纪全球气温上升方面也发挥了惊人的重要作用

这一趋势已经
改变了世界,

并有可能
在未来几十年变得更加剧烈。

公平地说,基本上
人类所做的一切都会

导致导致全球变暖的温室气体
排放。

这些排放大部分来自

我们通常不知道的工业过程,
但涉及我们生活的方方面面。

环顾你的家。

制冷——
连同其他加热和冷却——

约占总排放量的 6%。

生产我们食物的农业
占 18%。

电力占27%。

走到外面,汽车飞驰而过,
飞机从头顶飞过,

火车运送通勤者上班——

包括航运在内的交通运输

占温室气体排放量的 16%。

甚至在我们使用这些东西之前,
制造它们就会产生排放——

大量的排放。

制造材料——

混凝土、钢材、塑料、玻璃、
铝和其他所有材料——

占温室气体排放量的 31%。

仅混凝土就
占全球碳排放总量的 8%。

与其他建筑材料相比,减少混凝土的排放要困难

得多。

问题是水泥,
混凝土的四种成分之一。

它将其他三种成分——
砾石、沙子和水——结合在一起。

不幸的是,在不产生二氧化碳的情况下生产水泥是不可能的

水泥中的基本成分
是氧化钙,CaO。

我们从石灰石中获得氧化钙

,石灰石主要由碳酸钙制成:
CaCO3。

我们通过加热石灰石从 CaCO3 中提取 CaO

剩下的是CO2——二氧化碳。

因此,我们每生产一吨水泥,
就会释放一吨二氧化碳。

尽管这个问题很棘手,

但它意味着混凝土可以帮助
我们第三次改变世界

:消除温室气体排放
并稳定我们的气候。

现在,没有 100% 干净的混凝土,

但有一些很棒的想法
可以帮助我们实现目标。

水泥制造还

通过燃烧化石燃料
来加热石灰石产生温室气体排放。

相反,用清洁电力或替代燃料加热石灰石

将消除这些排放。

对于
来自石灰石本身的二氧化碳,

我们最好的选择是碳捕获:

具体而言,在碳进入大气之前
就在其产生的地方捕获碳

这样做的设备已经存在,

但它们没有被广泛使用,因为
没有经济激励。

运输然后
储存捕获的碳可能很昂贵。

为了解决这些问题,

一家公司找到了一种将
捕获的二氧化碳永久储存

在混凝土本身中的方法。

其他创新者正在修补
混凝土的基本化学成分。

一些人正在研究

通过减少混凝土中的水泥来减少排放的方法。

还有一些人一直在
努力发现和复制

罗马混凝土的秘密。

他们发现普林尼的话
是真的。

罗马人
在他们的水泥中使用火山灰。

当灰烬与海水相互作用时
,海水会强化它——

使它们的混凝土
比我们今天使用的任何混凝土都更坚固、更持久。

通过将这些发现添加到
现代创新的武器库中,

希望我们能够复制它们的成功——

既要制造持久的结构,

又要确保我们的后代能够
在数千年后欣赏它们。