The worlds biggest battery looks nothing like a battery

As of 2020, the world’s biggest
lithium-ion battery

is hooked up to the Southern California
power grid

and can provide 250 million watts
of power,

or enough to power about 250,000 homes.

But it’s actually not the biggest battery
in the world:

these lakes are.

Wait— how can a pair of lakes
be a battery?

To answer that question,
it helps to define a battery:

it’s simply something that stores energy
and releases it on demand.

The lithium-ion batteries that power
our phones, laptops, and cars

are just one type.

They store energy in lithium ions.

To release the energy, the ions
are separated from their electrons,

then rejoined at the other end
of the battery

as a new molecule with lower energy.

How do the two lakes
store and release energy?

First, one is 300 meters higher
than the other.

Electricity powers pumps that move
billions of liters of water

from the lower lake to the higher one.

This stores the energy by giving the water
extra gravitational potential energy.

Then, when there’s high demand
for electricity,

valves open, releasing the stored energy
by letting water flow downhill

to power 6 giant turbines that can
generate 3 billion watts of power

for 10 hours.

We’re going to need more and more
giant batteries.

That’s because right now, generating
enough electricity to power the world

produces an unsustainable amount
of greenhouse gas:

14 billion tons per year.

We’ll need to get that number
down to net-zero.

But many clean energy sources
can’t produce electricity 24/7.

So to make the switch, we need a way to
store the electricity until it’s needed.

That means we need grid-scale batteries:

batteries big enough
to power multiple cities.

Unfortunately, neither of the giant
batteries we’ve talked about so far

can solve this problem.

The two lakes setup requires specific
geography, takes up a lot of land,

and has high upfront costs to build.

The giant lithium-ion battery
in California, meanwhile,

can power about 250,000 homes, yes,
but only for an hour.

Lithium-ion batteries are great for things
that don’t use a lot of power.

But to store a lot of energy,
they have to be huge and heavy.

That’s why electric planes aren’t a thing:

the best electric plane
can only carry two people

for about 1,000 kilometers on one charge,

or its batteries would be too heavy
to fly.

A typical commercial jet can carry
300 people over 14,000 km

before refueling.

Lithium-ion batteries also require
certain heavy metals to make.

These resources are limited, and mining
them often causes environmental damage.

Inventors all over the world are rising
to the challenge

of making batteries that can meet
our needs—

many of them even weirder
than the two lakes.

One company is building
a skyscraper battery.

When the sun is shining,
a crane powered by solar energy

piles blocks on top of each other
in a tower.

At night, the cranes let gravity
pull the blocks down

and use the resulting power
to spin generators.

Though there have been
some early setbacks,

another promising approach involves
heating up salts until they melt.

The molten salt can be stored until
there’s a high demand for electricity,

then used to boil water.

The steam can power turbines
that generate electricity.

Another idea: bio-batteries made
from paper, powered by bacteria,

and activated by spit.

Bacteria release energy in the form
of electrons when they metabolize glucose,

and at least one species of bacteria can
transfer those electrons

outside its cells,
completing a circuit.

While these batteries won’t power
a city, or even a house,

they don’t have the waste and cost
concerns of traditional batteries.

From vast mountain lakes
to microscopic bacteria,

from seawater batteries
that bypass the need for heavy metals

to nuclear batteries
that power deep space missions,

we’re constantly rethinking
what a battery can be.

The next unlikely battery could
be hiding in plain sight—

just waiting to be discovered
and help us achieve a sustainable future.

截至 2020 年,世界上最大的
锂离子电池

已连接到南加州
电网

,可提供 2.5 亿
瓦电力,

或足以为约 25 万户家庭供电。

但它实际上并不是世界上最大的
电池:

这些湖泊才是。

等等——一对湖怎么
能成为电池?

为了回答这个问题,
定义电池是有帮助的:

它只是一种储存能量
并按需释放的东西。


我们的手机、笔记本电脑和汽车供电的锂离子电池

只是其中一种。

它们将能量储存在锂离子中。

为了释放能量,离子
从它们的电子中分离出来,

然后在电池的另一端重新结合

成一个能量较低的新分子。

这两个湖泊如何
储存和释放能量?

首先,一个比另一个高 300 米

电力驱动泵将
数十亿升的水

从较低的湖泊输送到较高的湖泊。

这通过给水
额外的重力势能来储存能量。

然后,当电力需求很高时

阀门打开,
通过让水流下山

来释放储存的能量,为 6 台巨型涡轮机提供动力,这些涡轮机可以在 10 小时内
产生 30 亿瓦的

电力。

我们将需要越来越多的
巨型电池。

那是因为现在,产生
足够的电力来为世界供电

会产生不可持续
的温室气体量:

每年 140 亿吨。

我们需要将该数字
降至零。

但是许多清洁能源
不能 24/7 全天候发电。

因此,要进行切换,我们需要一种方法来
存储电力直到需要它。

这意味着我们需要电网规模的电池:

大到足以
为多个城市供电的电池。

不幸的是,
到目前为止我们讨论过的巨型电池

都无法解决这个问题。

这两个湖的设置需要特定的
地理环境,占用大量土地,

并且建设的前期成本很高。 与此同时,加利福尼亚

的巨型锂离子电池

可以为大约 250,000 个家庭供电,是的,
但只能使用一个小时。

锂离子电池非常适合
不使用大量电力的东西。

但要储存大量能量,
它们必须又大又重。

这就是为什么电动飞机不存在的原因

:最好的电动飞机一次充电
只能载两个

人飞行约 1,000 公里,

否则它的电池太重而
无法飞行。

一架典型的商用喷气式飞机在加油前可以搭载
300 人飞行超过 14,000 公里

锂离子电池也需要
某些重金属来制造。

这些资源是有限的,开采
它们往往会造成环境破坏。

世界各地的发明家都在
迎接挑战

,制造能够满足我们需求的电池——其中

许多甚至
比这两个湖还要怪异。

一家公司正在建造
一座摩天大楼电池。

当阳光普照时,
一台由太阳能驱动的起重机将

积木堆叠
在塔中。

晚上,起重机让重力
将块体拉下,

并利用产生的动力
来旋转发电机。

尽管有
一些早期的挫折,但

另一种有希望的方法是
加热盐直到它们融化。

熔盐可以储存起来,直到
对电力的需求很高,

然后用来烧水。

蒸汽可以为发电的涡轮
机提供动力。

另一个想法:
由纸制成的生物电池,由细菌驱动

,由唾液激活。

细菌在
代谢葡萄糖时以电子的形式释放能量,

并且至少一种细菌可以
将这些电子转移

到其细胞外,从而
完成一个电路。

虽然这些电池不能
为城市甚至房屋供电,

但它们没有传统电池的浪费和成本
问题。

从广阔的高山湖泊
到微小的细菌,


不需要重金属的海水电池到为

深空任务提供动力的核电池,

我们一直在重新思考
什么是电池。

下一个不太可能的电池
可能隐藏在众目睽睽之下——

等待被发现
并帮助我们实现可持续的未来。