The worlds largest organism Alex Rosenthal

This is Goliath, the krill.

Don’t get too attached.

Today this 1 centimeter crustacean

will share the same fate as 40 million
of his closest friends:

a life sentence in the belly
of the largest blue whale in the world.

Let’s call her Leviatha.

Leviatha weighs
something like 150 metric tons,

and she’s the largest animal in the world.

But she’s not even close to being
the largest organism by weight,

which is estimated to equal
about 40 Leviatha’s.

So where is this behemoth?

Here, in Utah.

Sorry, that’s too close.

Here.

This is Pando, whose name means
“I spread out.”

Pando, a quaking aspen, has roughly
47,000 genetically identical clone trunks.

Those all grow from one
enormous root system,

which is why scientists consider Pando
a single organism.

Pando is the clear winner
of world’s largest organism by weight—

an incredible 6 million kilograms.

So how did Pando get to be so huge?

Pando is not an unusual aspen
from a genetic standpoint.

Rather, Pando’s size boils down
to three main factors:

its age, its location, and aspens’
remarkable evolutionary adaptation

of self-cloning.

So first, Pando is incredibly expansive
because it’s incredibly old.

How old exactly?

No one knows.

Dendrochronologist estimates range
from 80,000 to 1 million years.

The problem is, there’s no simple way
to gauge Pando’s age.

Counting the rings of a single trunk will
only account for up to 200 years or so,

as Pando is in a constant cycle of growth,
death, and renewal.

On average, each individual tree
lives 130 years,

before falling and being
replaced by new ones.

Second: location.

During the last ice age,
which ended about 12,000 years ago,

glaciers covered much
of the North American climate

friendly to aspens.

So if there were other comparably
sized clonal colonies,

they may have perished then.

Meanwhile, Pando’s corner of Utah
remained glacier-free.

The soil there is rich in nutrients
that Pando continuously replenishes;

as it drops leaves and trunks,

the nutrients return to nourish
new generations of clones.

Which brings us to the third cause
of Pando’s size: cloning.

Aspens are capable
of both sexual reproduction—

which produces a new organism—

and asexual reproduction—
which creates a clone.

They tend to reproduce sexually
when conditions are unfavorable

and the best strategy for survival
is to move elsewhere.

Trees aren’t particularly mobile,
but their seeds are.

Like the rest of us, sexual reproduction
is how Pando came into the world

in the first place all those tens
or hundreds of thousands of years ago.

The wind or a pollinator carried pollen
from the flower of one of its parents

to the other, where a sperm
cell fertilized an egg.

That flower produced fruit,
which split open,

releasing hundreds of tiny, light seeds.

The wind carried one to a wet spot
of land in what is now Utah,

where it took root and germinated
into Pando’s first stem.

A couple of years later, Pando grew mature
enough to reproduce asexually.

Asexual reproduction, or cloning,

tends to happen when the environment
is favorable to growth.

Aspens have long roots that burrow
through the soil.

These can sprout shoots that grow up
into new trunks.

And while Pando grew and spread out,
so did our ancestors.

As Hunter-gatherers who made
cave paintings, survived an ice age,

found their way to North America, built
civilizations in Egypt and Mesopotamia,

fought wars, domesticated animals,
fought wars, formed nations,

built machines,

and invented the internet,
and always newer ways to fight wars.

Pando has survived many millennia
of changing climates and encroaching ice.

But it may not survive us.

New stems are growing to maturity
much more slowly than they need to

in order to replace the trunks that fall.

Scientists have identified two main
reasons for this.

The first is that we’ve deprived
Pando of fire.

When a fire clears a patch of forest,
Aspen roots survive,

and send shoots bursting up out
of the ground by the tens of thousands.

And secondly, grazers like herds of cattle
and mule deer—

whose natural predators we’ve hunted
to the point of local elimination—

are eating Pando’s fresh growth.

If we lose the world’s largest organism,
we’ll lose a scientific treasure trove.

Because Pando’s trunks
are genetically identical,

they can serve as a controlled setting
for studies

on everything from the tree microbiome

to the influence of climate
on tree growth rates.

The good news is,
we have a chance to save Pando,

by reducing livestock grazing in the area

and further protecting
the vulnerable young saplings.

And the time to act is today.

Because as with so many other marvels
of our natural world,

once they’re gone it will be a very,
very long time before they return.

这是哥利亚,磷虾。

不要太执着。

今天,这只 1 厘米长的甲壳类动物


与他 4000 万最亲密的朋友分享同样的命运:

在世界上最大的蓝鲸腹部被判无期徒刑。

我们就叫她利维莎吧。

利维莎重约
150 公吨

,是世界上最大的动物。


按重量计算,她甚至还没有成为最大的有机体

,估计
相当于 40 只利维莎。

那么这个庞然大物在哪里呢?

在这里,在犹他州。

抱歉,太近了。

这里。

这是潘多,他的名字的意思是
“我散开”。

Pando 是一棵颤抖的白杨,大约有
47,000 根基因相同的克隆树干。

这些都是从一个
巨大的根系中生长出来的,

这就是为什么科学家们认为潘多
是一个单一的有机体。

潘多
是世界上重量最大的有机体——

令人难以置信的 600 万公斤——的明显赢家。

那么潘多是如何变得如此庞大的呢? 从基因的角度来看,

Pando 并不是一种不寻常的白杨

相反,潘多的规模归结
为三个主要因素:

它的年龄、它的位置以及白杨对自我克隆的
显着进化适应

所以首先,Pando 非常广阔,
因为它非常古老。

具体几岁?

没人知道。

树木年代学家估计范围
从 80,000 到 100 万年。

问题是,没有简单的方法
来衡量潘多的年龄。

数一个树干的年轮
最多只能计算 200 年左右,

因为潘多处于一个不断增长、
死亡和更新的循环中。

平均而言,每棵树的
寿命为 130 年,

然后才会倒下
并被新树取代。

第二:位置。

在大约 12,000 年前结束的最后一个冰河时代,

冰川覆盖
了北美大部分气候

友好的白杨。

因此,如果还有其他
大小相当的克隆殖民地,

那么它们可能已经灭亡了。

与此同时,潘多所在的犹他州一角
仍然没有冰川。

那里的土壤富含
潘多不断补充的养分;

当它掉落叶子和树干时

,营养物质会返回以滋养
新一代的克隆。

这将我们带到了潘多大小的第三个原因
:克隆。

白杨
既能进行有性繁殖

(产生新的有机体)

,也能进行无性繁殖
(产生克隆)。 当条件不利时,

它们往往会进行有性繁殖

,而生存的最佳策略
是搬到别处。

树不是特别移动,
但它们的种子是。

和我们其他人一样,有性生殖
是潘多

在数万年
或数十万年前首先来到这个世界的方式。

风或传粉者将花粉
从其父母之一的花

带到另一个,精子
细胞使卵子受精。

那朵花结出果实,果实
裂开,

释放出数百个微小而轻的种子。

风把一个人带到
了现在犹他州的一块潮湿的土地上,

在那里它生根发芽,长
成了潘多的第一根茎。

几年后,潘多变得成熟
到可以无性繁殖。

当环境有利于生长时,往往会发生无性繁殖或克隆

白杨有很长的根,可以
穿过土壤。

这些可以发芽长
成新的树干。

在潘多成长和传播的同时,
我们的祖先也是如此。

作为狩猎采集者,他们制作
洞穴壁画,在冰河时代幸存下来,

找到通往北美的道路,
在埃及和美索不达米亚建立文明,

打仗,驯养动物,
打仗,组建国家,

制造机器

,发明互联网,
并且总是 更新的战争方式。

潘多在数千年
的气候变化和冰层侵蚀中幸存下来。

但它可能无法生存。

新茎长到成熟
的速度比它们需要的要慢得多

,以取代掉落的树干。

科学家们已经确定了
造成这种情况的两个主要原因。

首先是我们剥夺了
潘多的火力。

当一场大火烧毁了一片森林时,
阿斯彭的根得以存活,

并让
数以万计的新芽从地下迸发出来。

其次,像牛群和骡鹿这样的食草动物——

我们已经
将它们的天敌猎杀到了当地消灭的地步——

正在吃潘多的新鲜生长。

如果我们失去了世界上最大的有机体,
我们将失去一个科学宝库。

因为潘多的树干
在基因上是相同的,

所以它们可以作为

研究从树木微生物组

到气候
对树木生长速度影响的所有方面的受控环境。

好消息是,
我们有机会

通过减少该地区的牲畜放牧

并进一步
保护脆弱的幼树来拯救 Pando。

现在是采取行动的时候了。

因为就像
我们自然世界的许多其他奇迹一样,

一旦它们消失,它们将需要
很长时间才能返回。