What in the world is topological quantum matter Fan Zhang

What if electricity could travel forever
without being diminished?

What if a computer could run exponentially
faster with perfect accuracy?

What technology could
those abilities build?

We may be able to find out thanks
to the work of the three scientists

who won the Nobel Prize
in Physics in 2016.

David Thouless,

Duncan Haldane,

and Michael Kosterlitz won the award
for discovering

that even microscopic matter
at the smallest scale

can exhibit macroscopic properties
and phases that are topological.

But what does that mean?

First of all, topology is a branch
of mathematics

that focuses on fundamental properties
of objects.

Topological properties don’t change when
an object is gradually stretched or bent.

The object has to be torn or attached
in new places.

A donut and a coffee cup look the same
to a topologist

because they both have one hole.

You could reshape a donut
into a coffee cup

and it would still have just one.

That topological property is stable.

On the other hand,
a pretzel has three holes.

There are no smooth incremental changes
that will turn a donut into a pretzel.

You’d have to tear two new holes.

For a long time, it wasn’t clear
whether topology was useful

for describing the behaviors
of subatomic particles.

That’s because particles,
like electrons and photons,

are subject to the strange laws
of quantum physics,

which involve a great deal of uncertainty

that we don’t see
at the scale of coffee cups.

But the Nobel Laureates discovered
that topological properties

do exist at the quantum level.

And that discovery may revolutionize
materials science,

electronic engineering,

and computer science.

That’s because these properties
lend surprising stability

and remarkable characteristics
to some exotic phases of matter

in the delicate quantum world.

One example is called
a topological insulator.

Imagine a film of electrons.

If a strong enough magnetic field
passes through them,

each electron will start traveling
in a circle,

which is called
a closed orbit.

Because the electrons are stuck
in these loops,

they’re not conducting electricity.

But at the edge of the material,

the orbits become open, connected,
and they all point in the same direction.

So electrons can jump
from one orbit to the next

and travel all the way around the edge.

This means that the material
conducts electricity around the edge

but not in the middle.

Here’s where topology comes in.

This conductivity isn’t affected
by small changes in the material,

like impurities or imperfections.

That’s just like how the hole
in the coffee cup

isn’t changed by stretching it out.

The edge of such a topological insulator
has perfect electron transport:

no electrons travel backward,

no energy is lost as heat,

and the number of conducting pathways
can even be controlled.

The electronics of the future
could be built

to use this perfectly efficient
electron highway.

The topological properties
of subatomic particles

could also transform quantum computing.

Quantum computers
take advantage of the fact

that subatomic particles can be
in different states at the same time

to store information in something
called qubits.

These qubits can solve problems
exponentially faster

than classical digital computers.

The problem is that this data
is so delicate

that interaction with the environment
can destroy it.

But in some exotic topological phases,

the subatomic particles
can become protected.

In other words, the qubits formed by them

can’t be changed by small
or local disturbances.

These topological qubits
would be more stable,

leading to more accurate computation
and a better quantum computer.

Topology was originally studied as
a branch of purely abstract mathematics.

Thanks to the pioneering work
of Thouless, Haldane, and Kosterlitz,

we now know it can be used to understand
the riddles of nature

and to revolutionize
the future of technologies.

如果电力可以永远传播
而不会减少呢?

如果计算机能够
以完美的精度以指数级速度运行会怎样?

这些能力可以建立什么技术?

感谢 2016 年获得诺贝尔物理学奖的三位科学家的工作,我们或许能够找到

答案。大卫·图勒斯 (David Thouless)、

邓肯·霍尔丹 (Duncan Haldane)

和迈克尔·科斯特里茨 (Michael Kosterlitz) 获奖是
因为他们

发现即使
是最小尺度的微观物质

也能表现出宏观
拓扑性质和相位。

但是,这是什么意思?

首先,拓扑学是数学的一个分支

,关注
对象的基本属性。

当对象逐渐拉伸或弯曲时,拓扑属性不会改变。

该对象必须在新的地方被撕裂或附着

甜甜圈和咖啡杯在
拓扑学家看来是一样的,

因为它们都有一个洞。

你可以把一个甜甜圈改造
成一个咖啡杯

,它仍然只有一个。

该拓扑性质是稳定的。

另一方面
,椒盐卷饼有三个孔。

没有平滑的增量变化
可以将甜甜圈变成椒盐脆饼。

你必须撕开两个新洞。

很长一段时间以来,还
不清楚拓扑是否

有助于描述
亚原子粒子的行为。

这是因为粒子,
如电子和光子

,受制于奇异
的量子物理学定律,

其中涉及大量

我们在咖啡杯规模上看不到的不确定性

但诺贝尔奖获得者发现
,拓扑性质

确实存在于量子水平上。

这一发现可能会彻底改变
材料科学、

电子工程

和计算机科学。

这是因为这些特性为微妙的量子世界中一些奇异的物质相
提供了惊人的稳定性

和显着特征

一个例子
称为拓扑绝缘体。

想象一下电子薄膜。

如果有足够强的磁场
穿过它们,

每个电子都会开始
绕圈运动,

这被
称为闭合轨道。

因为电子被困
在这些回路中,

所以它们不导电。

但在材料的边缘

,轨道变得开放、相连,
并且都指向同一个方向。

所以电子可以
从一个轨道跳到下一个轨道,

并一直绕着边缘行进。

这意味着材料
在边缘周围导电,

但在中间不导电。

这就是拓扑的用武之地。

这种导电性不受
材料的微小变化(

如杂质或缺陷)的影响。

这就像
咖啡杯上的洞

不会被拉长而改变一样。

这种拓扑绝缘体的边缘
具有完美的电子传输:

没有电子向后传播,

没有能量作为热量损失,

甚至可以控制导电路径的数量

未来的电子产品
可以

使用这条非常高效的
电子高速公路。

亚原子粒子的拓扑特性

也可以改变量子计算。

量子计算机
利用

亚原子粒子可以
同时处于不同状态的事实

将信息存储在
称为量子比特的东西中。

这些量子比特解决问题的
速度

比经典数字计算机要快得多。

问题是这些数据
非常微妙

,以至于与环境的交互
会破坏它。

但是在一些奇异的拓扑相中,

亚原子粒子
可以得到保护。

换句话说,它们所形成的量子比特

不能被小的
或局部的扰动所改变。

这些拓扑量子比特
会更稳定,

从而带来更准确的计算
和更好的量子计算机。

拓扑最初是作为
纯抽象数学的一个分支来研究的。

感谢
Thouless、Haldane 和 Kosterlitz 的开创性工作,

我们现在知道它可以用来理解
自然之谜

并彻底改变
技术的未来。