What is the coldest thing in the world Lina Marieth Hoyos

The coldest materials in the world
aren’t in Antarctica.

They’re not at the top of Mount Everest

or buried in a glacier.

They’re in physics labs:

clouds of gases held just fractions
of a degree above absolute zero.

That’s 395 million times colder
than your refrigerator,

100 million times colder
than liquid nitrogen,

and 4 million times colder
than outer space.

Temperatures this low give scientists a
window into the inner workings of matter,

and allow engineers to build
incredibly sensitive instruments

that tell us more about everything

from our exact position on the planet

to what’s happening in
the farthest reaches of the universe.

How do we create such
extreme temperatures?

In short, by slowing down
moving particles.

When we’re talking about temperature,
what we’re really talking about is motion.

The atoms that make up solids,

liquids,

and gases

are moving all the time.

When atoms are moving more rapidly,
we perceive that matter as hot.

When they’re moving more
slowly, we perceive it as cold.

To make a hot object
or gas cold in everyday life,

we place it in a colder environment,
like a refrigerator.

Some of the atomic motion in the hot
object is transferred to the surroundings,

and it cools down.

But there’s a limit to this:

even outer space is too warm
to create ultra-low temperatures.

So instead, scientists figured out a way
to slow the atoms down directly –

with a laser beam.

Under most circumstances,

the energy in a laser beam
heats things up.

But used in a very precise way,

the beam’s momentum can stall
moving atoms, cooling them down.

That’s what happens in a device
called a magneto-optical trap.

Atoms are injected into a vacuum chamber,

and a magnetic field
draws them towards the center.

A laser beam aimed
at the middle of the chamber

is tuned to just the right frequency

that an atom moving towards it will absorb
a photon of the laser beam and slow down.

The slow down effect comes from
the transfer of momentum

between the atom and the photon.

A total of six beams,
in a perpendicular arrangement,

ensure that atoms traveling
in all directions will be intercepted.

At the center, where the beams intersect,

the atoms move sluggishly,
as if trapped in a thick liquid —

an effect the researchers who invented it
described as “optical molasses.”

A magneto-optical trap like this

can cool atoms down
to just a few microkelvins —

about -273 degrees Celsius.

This technique was developed in the 1980s,

and the scientists
who’d contributed to it

won the Nobel Prize in Physics in 1997
for the discovery.

Since then, laser cooling has been
improved to reach even lower temperatures.

But why would you want
to cool atoms down that much?

First of all, cold atoms can make
very good detectors.

With so little energy,

they’re incredibly sensitive
to fluctuations in the environment.

So they’re used in devices that find
underground oil and mineral deposits,

and they also make
highly accurate atomic clocks,

like the ones used
in global positioning satellites.

Secondly, cold atoms hold
enormous potential

for probing the frontiers of physics.

Their extreme sensitivity
makes them candidates

to be used to detect gravitational waves
in future space-based detectors.

They’re also useful for the study
of atomic and subatomic phenomena,

which requires measuring incredibly
tiny fluctuations in the energy of atoms.

Those are drowned out
at normal temperatures,

when atoms speed around
at hundreds of meters per second.

Laser cooling can slow atoms to just
a few centimeters per second—

enough for the motion caused by
atomic quantum effects to become obvious.

Ultracold atoms have already
allowed scientists to study phenomena

like Bose-Einstein condensation,

in which atoms are cooled almost
to absolute zero

and become a rare new state of matter.

So as researchers continue in their quest
to understand the laws of physics

and unravel the mysteries of the universe,

they’ll do so with the help
of the very coldest atoms in it.

世界上最冷的材料
不在南极洲。

它们不在珠穆朗玛峰的顶部,也没有

埋在冰川中。

他们在物理实验室里:

气体云只
比绝对零高几分之一度。

这比你的冰箱冷 3.95 亿倍

液氮冷 1 亿倍,比外太空冷 400 万倍

如此低的温度为科学家们提供了
一扇了解物质内部运作的窗口,

并让工程师们能够制造出
极其灵敏的仪器

,这些仪器可以告诉我们更多关于

从我们在地球上的确切位置

到宇宙最远地区正在发生的一切
的一切信息。

我们如何创造如此
极端的温度?

简而言之,通过减慢
移动粒子的速度。

当我们谈论温度时,
我们真正谈论的是运动。

构成固体、

液体

和气体

的原子一直在运动。

当原子移动得更快时,
我们会认为该物质是热的。

当它们移动得更
慢时,我们会觉得它很冷。

为了使日常生活中的热物体
或气体变冷,

我们将其放置在较冷的环境中,
例如冰箱。

热物体中的一些原子运动
被转移到周围环境中,

然后冷却下来。

但这有一个限制:

即使是外太空也太热而
无法产生超低温。

因此,科学家们找到了一种
直接减慢原子速度的方法——

用激光束。

在大多数情况下,

激光束中的能量
会加热物体。

但是以非常精确的方式使用

,光束的动量可以使
移动的原子停止,使它们冷却下来。

这就是在称为磁光阱的设备中发生的事情

原子被注入真空室,

磁场将它们拉向中心。

瞄准腔室中间的激光束

被调整到恰到好处的频率

,使向它移动的原子将吸收
激光束的光子并减慢速度。

减速效应来自

原子和光子之间的动量转移。

总共有六个
垂直排列的光束,

确保
在所有方向上传播的原子都将被拦截。

在光束相交的中心

,原子移动缓慢,
仿佛被困在浓稠的液体中——

发明它的研究人员将这种效应
描述为“光学糖蜜”。

像这样的磁光阱

可以将原子冷却
到几微开尔文——

大约-273摄氏度。

这项技术是在 1980 年代开发的,

为此做出贡献的科学家因这一发现而

获得了 1997 年的诺贝尔物理学奖

从那时起,激光冷却得到了
改进,可以达到更低的温度。

但是你为什么
要让原子冷却这么多呢?

首先,冷原子可以制成
非常好的探测器。

由于能量如此之少,

它们
对环境的波动非常敏感。

因此,它们被用于寻找
地下石油和矿藏的设备中

,它们还制造
高精度的原子钟,

就像
用于全球定位卫星的原子钟一样。

其次,冷原子具有

探索物理学前沿的巨大潜力。

它们极高的灵敏度
使它们

成为未来天基探测器中用于探测引力波的候选者

它们对于
研究原子和亚原子现象也很有用,

这需要测量
原子能量中极其微小的波动。

当原子
以每秒数百米的速度运行时,它们在正常温度下会被淹没。

激光冷却可以将原子减慢
到每秒几厘米——

足以让
原子量子效应引起的运动变得明显。

超冷原子已经
让科学家们能够研究

像玻色-爱因斯坦凝聚这样的现象

,其中原子几乎被冷却
到绝对零,

并成为一种罕见的新物质状态。

因此,随着研究人员继续
寻求理解物理定律

并解开宇宙的奥秘,

他们将
在其中最冷的原子的帮助下做到这一点。