What makes tuberculosis TB the worlds most infectious killer Melvin Sanicas

In 2008, archeologists uncovered two
9,000-year old skeletons.

There’s no definitive way of knowing what
killed these ancient people,

but we do know their bones were infected
by an all too familiar bacterium.

The ancient Greeks knew its consumptive
effects as phthisis;

the Incans called it chaky oncay;
and the English called it tuberculosis.

Today, tuberculosis, or TB,

is still one of the world’s biggest
infectious killers,

causing more deaths than malaria or
even HIV and AIDS.

But what exactly is this disease, and how
has this pathogen persisted for so long?

Typically, TB bacteria called
mycobacterium tuberculosis, are airborne.

They travel into our airways and
infect our lungs.

Here, immune cells called macrophages
rush to the infection site,

attempting to absorb and break down
the bacterial invaders.

In many cases, this response is enough
to remove the bacteria.

But in individuals with other
medical conditions–

ranging from malnutrition and HIV to
diabetes and pregnancy

–the immune response may not be
strong enough to destroy the intruder.

If so, mycobacterium tuberculosis will
reproduce inside those macrophages,

and form colonies in the
surrounding lung tissue.

As they infect more cells,

the bacteria employ cell-degrading enzymes
that destroy the infected tissue,

triggering chest pain, and causing
patients to cough up blood.

The damage to the lungs leads to
oxygen deprivation.

This begins a flood of hormonal changes–

including a decrease in appetite and
iron production.

From here, microbes can spread to the
skeletal system,

causing back pain and difficulty moving;

to the kidneys and intestines,
causing abdominal pain;

and to the brain, causing headaches
and even impaired consciousness.

These symptoms produce the
classic image of TB:

weight loss, a hacking, bloody cough,
and ashen skin.

This ghostly appearance earned TB
the title of the ‘White Plague’

in Victorian-era England.

During this period, tuberculosis was
considered a ‘romantic disease,'

because it tended to affect poverty-
stricken artists and poets–

those with weaker immune systems.

TB’s outward symptoms even helped
fuel the popular myth of vampirism.

In spite of– or perhaps because of
these less than scientific concerns,

this period also marked the first strides
toward curing TB.

In 1882, the German physician Robert Koch

identified the disease’s
bacterial origins.

13 years later, physicist Wilhelm
Roentgen  discovered the X-ray,

enabling physicians to diagnose and track
its progression through the body.

These techniques allowed researchers to
develop reliable and effective vaccines–

first for smallpox, and again in 1921,

when scientists developed the BCG
vaccine to battle TB.

These developments laid the groundwork
for the modern field of antibiotics–

currently home to our most effective
TB treatments.

But, antibiotics fail to address a major
diagnostic complication:

about 90% of people infected with TB
don’t show any symptoms.

In these latent infections, the TB
bacterium may be dormant,

only activating when someone’s immune
system is too weak to mount a defense.

This makes TB much harder to diagnose.

And even when properly identified,

traditional treatments can take
up to 9 months,

requiring multiple drugs and a high
potential for side effects.

This discourages people from finishing
the full course,

and partial treatment enables bacteria to
develop resistance to these drugs.

Today, the disease is still prevalent
in 30 countries,

most of which face other health crises

that exacerbate TB and
trigger latent cases.

Worse still, accessing treatment can
be difficult in many of these countries,

and the stigma towards TB can discourage
people from getting the help they need.

Health experts agree we need to
develop better diagnostics,

faster acting antibiotics, and more
effective vaccines.

Researchers have already developed a urine
test that yields results in 12 hours,

as well as a new oral treatment that could
cut treatment time by 75%.

Hopefully, with advancements like these,

we’ll finally be able to make TB
exclusively a thing of the past.

2008 年,考古学家发现了两具
9000 年前的骨骼。

没有确切的方法可以知道是什么
杀死了这些古代人,

但我们确实知道他们的骨头是
被一种非常熟悉的细菌感染的。

古希腊人知道它的消耗
效果是肺痨。

印加人称它为chaky oncay;
英国人称之为结核病。

今天,结核病或结核病

仍然是世界上最大的
传染性杀手之一,

造成的死亡人数超过疟疾
甚至艾滋病毒和艾滋病。

但这种疾病究竟是什么,
这种病原体是如何持续存在这么长时间的呢?

通常,称为
结核分枝杆菌的结核菌是空气传播的。

它们进入我们的呼吸道并
感染我们的肺部。

在这里,称为巨噬细胞的免疫细胞会
冲向感染部位,

试图吸收和
分解细菌入侵者。

在许多情况下,这种反应
足以去除细菌。

但在患有其他疾病的个体中——

从营养不良和艾滋病毒到
糖尿病和

怀孕——免疫反应可能
不足以摧毁入侵者。

如果是这样,结核分枝杆菌将
在这些巨噬细胞内繁殖,

并在
周围的肺组织中形成菌落。

当它们感染更多的细胞时

,细菌会使用细胞降解酶
来破坏受感染的组织,

引发胸痛,并导致
患者咳血。

对肺部的损害会导致
缺氧。

这开始了大量的荷尔蒙变化——

包括食欲和
铁产量的下降。

从这里,微生物可以扩散到
骨骼系统,

导致背痛和行动困难;

到肾脏和肠道,
引起腹痛;

和大脑,导致头痛
,甚至意识障碍。

这些症状产生
了结核病的典型形象:

体重减轻、咳嗽、带血的咳嗽
和苍白的皮肤。

这种幽灵般的外表为 TB 赢得
了维多利亚时代英国“白色瘟疫”的称号

在此期间,肺结核被
认为是一种“浪漫病”,

因为它往往会影响
贫困的艺术家和诗人——

那些免疫系统较弱的人。

结核病的外在症状甚至
助长了流行的吸血鬼神话。

尽管存在——或者可能是因为
这些不那么科学的担忧,

这一时期也标志着
治愈结核病的第一步。

1882 年,德国医生罗伯特·科赫

确定了这种疾病的
细菌起源。

13 年后,物理学家威廉·伦琴 (Wilhelm
Roentgen) 发现了 X 射线,

使医生能够诊断并跟踪其
在体内的进展。

这些技术使研究人员能够
开发出可靠且有效的疫苗——

首先是针对天花的,然后在 1921 年再次

开发出 BCG
疫苗来对抗结核病。

这些发展
为现代抗生素领域奠定了基础——

目前是我们最有效的
结核病治疗方法。

但是,抗生素无法解决一个主要的
诊断并发症:

大约 90% 的结核病感染
者没有任何症状。

在这些潜伏感染中,
结核菌可能处于休眠状态,

只有当某人的免疫
系统太弱而无法防御时才会激活。

这使得结核病更难诊断。

即使正确识别,

传统治疗也可能需要
长达 9 个月的时间,

需要多种药物,并且极有
可能产生副作用。

这阻碍了人们
完成整个疗程

,部分治疗使细菌
对这些药物产生抗药性。

今天,这种疾病仍然
在 30 个国家流行,

其中大多数国家面临

着加剧结核病并
引发潜伏病例的其他健康危机。

更糟糕的是,
在这些国家中的许多国家,获得治疗可能很困难,

而且对结核病的污名可能会阻止
人们获得他们需要的帮助。

卫生专家一致认为,我们需要
开发更好的诊断方法、

更快起效的抗生素和更
有效的疫苗。

研究人员已经开发出一种
可以在 12 小时内产生结果的尿液检测方法,

以及一种可以
将治疗时间缩短 75% 的新型口服疗法。

希望通过这样的进步,

我们最终能够让
结核病成为过去。