Why Quantum Computing Could Transform Our World

[Music]

this is liquid nitrogen

this is a superconductor

and this is a track of magnets

when i dip this superconductor

into the liquid nitrogen and then place

it on top of this magnetic track

something special happens

it levitates

imagine what you could do with this

technology

some people have used it to create a

hovering skateboard or how about a

hovering train getting you to your

destination faster and using less energy

or maybe a hovering car

there are many potential applications of

this technology from storing energy to

power cables

but the problem is it’s difficult to

implement in real life

why well one of the reasons is because

we need to cool down the superconductor

to minus

181 degrees celsius

but imagine if we could create a

superconductor that doesn’t need to be

cooled down that could work at room

temperature and room pressure this might

be possible

if we could understand how the atoms in

this superconductor behave

the problem is that the world’s best

computer does not have the power to

understand this

a quantum computer could change that a

quantum computer is a fundamentally new

type of computer that uses quantum

physics

everything in this world is made up of

atoms and quantum physics describes how

those atoms behave

therefore we could potentially

understand how the atoms in the

superconductor behave and that could

give us insight into creating a

superconductor that could work at room

temperatures and pressures

therefore quantum computing could unlock

the amazing applications of this

superconductor technology

the first time that i saw this

superconductor experiment was in 2009

when i was 13 years old my school got

invited to a technology event at the

local microsoft offices in reading in

the uk

i remember walking into a room and there

were all sorts of crazy experiments on

display

this is a picture from the actual event

there were explosions liquid nitrogen

superconductors it was incredible

and i remember the speaker chris bishop

the one in the green shirt

describing quantum physics and i vividly

remember his description and it seemed

out of this world but it describes how

the world works

that was the spark that led me to study

physics and computer science at

university

where i started the harvard college and

stanford quantum computing associations

now i’m doing my phd in physics at the

university of oxford specializing in

quantum computing

over the years from the time that this

picture is taken till now i’ve seen the

amazing evolution of quantum computing

and that’s why i believe that quantum

computing could transform our world

it’s because of the potential of quantum

computing that we have discovered

it’s because of the power of quantum

computing that we have uncovered

it’s because of the progress of

significant achievements that we have

ushered

let’s understand how these three

elements could lead to quantum computing

transforming our world

first what could we do with a quantum

computer that we can’t do with a normal

computer

to illustrate such an example

i have this bag inside i’m going to put

four balls

three of them are white

one

two

three

and one of them

is blue

then i’m going to close it shake it up

shake it up so that it’s random

and then let’s say i’m searching for the

blue ball

well

i could open it up

pick out a ball

and check whether it’s blue

and then i will continue

until i find the blue ball

this is how your normal computer solves

such a problem

if we had four balls it would take a

maximum of four tries since you might

get the blue ball on your last try

but what if this were a quantum computer

even if i put all four balls inside this

bag

with a quantum computer you could get

the blue ball on the first try

every

single

time

so a quantum computer could speed up

this process from four tries to one try

and in general quantum computing can

speed up searching when there is no

structure this example is called

grover’s search

and there are other processes that

quantum computing can speed up and when

i mean speed up i really mean speed up

for example there are certain processes

that could take billions of years to

solve on our normal computers because

you have to search through so many

possibilities

a quantum computer could do this in just

seconds

and this is why it’s so exciting things

that are practically impossible to solve

today could be made possible with a

quantum computer

and this could transform industries

for example in medicine you want to find

a new medicine

and that process can take some time as

you have to search through a lot of

different possibilities a quantum

computer could speed this up allowing us

to find new medicines that could cure

some diseases

or how about a vaccine we’re all

familiar with the time frame it takes to

develop a vaccine

while a quantum computer could

potentially help us find a vaccine

faster

or what about in material science you

want to create new materials that could

make the phone and the laptop you use

lighter and stronger while a quantum

computer could do this

and how about artificial intelligence

we’ve made more progress in ai now

because of the more powerful computers

we have today compared to many years ago

in a similar way a quantum computer

could advance artificial intelligence

as you can see there’s so many

applications of quantum computing from

finance to space to logistics

we could solve today’s unsolved problems

with quantum computing

which could transform our world

so how are we able to do all of this

well this is because of the power of

quantum computing that we have uncovered

now in order to understand

this power we have to understand a

little bit about how our normal

computers work let’s say you’re typing

up an email to your friend hey smiley

face what is your computer doing when

you do that well you may speak english

but your computer speaks the language of

binary the english alphabet is a to z

but the binary alphabet is just 0 and 1.

so anything you type is translated to a

sequence of zeros and ones

for example this h is translated to

these sequence of zeros and ones

and you can do this for e y smiley face

and your computer does this for

everything that you do on it it always

translates it to zeros and ones

now to illustrate this which is called

the bit i have this donut

let’s say the plane side is equivalent

to zero and the frosted side is

equivalent to one

this is called the classical bit it’s

called a classical bit because it’s used

on our classical computers and a

classical computer is basically your

normal computer

now what about a quantum computer a

quantum computer also has sort of bits

but

they’re different

we call them

creatively quantum bits also known as

qubits

and a qubit can be zero and it can be

one but it has access to something

special

it has access to quantum physics which

means it can behave in a quantum way

for example it can be a combination of

zero and one i think of it like this

spinning donut

now

it’s a combination

and this is called superposition

how powerful is superposition

let’s say you have 300 cubits in

superposition

how many classical bits would you need

to represent this

this number

that’s 10 to the power of 90.

this number is so large it’s more than

the number of

atoms in the observable universe

so as you can see superposition and

other quantum effects

make our quantum computers powerful so

how do we put our qubit into

superposition

we use something called quantum gates

quantum gates change how our qubit

behaves

for example we have this hadamard gate

so this hadamard gate takes our bit as

zero

we put it through the gate and now it

ends up in superposition

remember i showed this example with the

four balls and how you could find the

blue ball in one try well the reason the

quantum computer could do this is

because you put all of the balls in

superposition and the way you do that is

through the hadamard gate let’s say

you’re baking a cake you might use a

recipe the recipe tells you instructions

on how to use the tools you have

to change the ingredients so that you

end up getting your cake

well a quantum algorithm is a set of

instructions that we give to a quantum

computer

so the quantum algorithm is like the

recipe

the tools that we’re using

are like the quantum gates and the

qubits are like the ingredients

so a quantum algorithm tells you how to

apply

the quantum gates so that you change the

qubits so that you get your desired

solution

so how much progress have we made in

quantum computing

i’ve talked about all of the amazing

applications in the power but how much

progress have we actually made

well there have been significant

achievements that we have ushered

computers used to be only accessible to

scientists but there was a big shift in

the 1970s

and that’s when computers became

available for everyone to use in their

own home

now these computers were limited and

you couldn’t do many things with them

because they were not so powerful but

people played around with them

and as they did that transformed the

industry

well people think that quantum computers

do not exist or that they’re only

accessible by scientists

no

that shift has occurred

in 2016 quantum computers became

available for everyone to use and you

don’t even need to buy one you can just

use it for free through the internet

now these quantum computers are limited

there are a limited number of things you

can do with them they’re not very

powerful but as people play around with

them that could help the field progress

so let’s take a sneak peek at how you

use a quantum computer you can use the

ibm quantum experience when you go to

this platform you see that there are

these different lines these correspond

to each

qubit

and now you can also see the quantum

gates so these are the different tools

that we can apply to the qubits to get

our desired solution

so for example if i want to put my qubit

into superposition i can drag this

hadamard gate onto the first line which

corresponds to the first qubit and then

i can click run

and it can run on a real quantum

computer

now this is a simple example but there

are more complicated things you can do

with a quantum computer

for example you could play quantum chess

you could do machine learning you can

find the optimal path for a bus and one

of the reasons this is possible is

because of the progress that we’ve made

in the hardware now in order to

understand the progress in the hardware

i’m going to visit the leak lab at the

university of oxford they’re building

quantum computers for commercial quantum

computing by their spin-out company

oxford quantum circuits and they were

kind to let me take a look at their lab

this

is the leak lab now you might be able to

hear some of the background noise this

is the noise of the fridges cooling down

the quantum computers at the beginning

of this talk i showed the superconductor

that needed to be dipped in liquid

nitrogen so that it was cooled down so

it could work well it’s similar here

because here they’re using

superconductors for their quantum

computers so they need to cool them down

in order for them to work

in my hand i’m holding four real qubits

made out of superconductors

you can even see the cubits with your

naked eye and if you look close enough

this one actually has the shape of a

donut but not all cubits are made like

this so they do not all look like this

so these qubits are placed at the bottom

of this fridge

when i run something on the ibm quantum

experience or use any quantum computer

the instructions i send the quantum

gates are sent to the quantum computer

similar to this one

through the internet and then the

instructions are sent all the way down

to this fridge

they apply the gates to the qubits

and then we get the result back to us

incredible

and we’ve made so much progress in the

hardware about five years ago we only

had five qubits but now we have around

53 qubits and more and 53 qubits allowed

us to achieve a significant milestone in

the field in 2019

this was the first time that an actual

quantum computer could outperform the

world’s best supercomputer

google constructed a problem and then

they ran it on their quantum device

and it took about 200 seconds

then they estimated how long would this

take on the world’s best supercomputer

10 000 years

amazing

but the thing is that this is for a

problem that is constructed so it

doesn’t have real world applications yet

so the next milestone is to do this

experiment outperform a normal computer

for real-world application

and this is called quantum advantage

quantum advantage could transform this

world

and you could be a part of it

if you’re in industry you could work

with quantum computing companies to find

potential applications in your industry

if you’re interested in the power and

how quantum computing works you can

actually run your algorithms on

applications on real quantum computers

and if you’re in the quantum computing

industry you can educate the future

workforce of people that will contribute

to the progress of this field

as people unlock new applications play

with quantum computers and build a

quantum ecosystem

quantum computing becomes more likely to

live up to its potential

and beyond then it is only a matter of

time until it turns our world upside

down

thank you

[音乐]

这是液氮

这是

超导体 这是磁体轨道

当我将超导体

浸入液氮中然后将

其放在磁轨道顶部时

会发生一些特殊的事情

它悬浮

想象你可以用这项技术做什么

有些人用它来制造

悬停滑板,或者

让悬停的火车让你

更快地到达目的地并使用更少的能源,

或者也许是一辆悬停的汽车

,从储存能量到电力电缆,这项技术有许多潜在的应用,

但问题是它 很难

在现实生活中实现,

原因之一是因为

我们需要将超导体冷却

到负

181 摄氏度,

但想象一下,如果我们可以制造一种

不需要冷却的超导体,

它可以在室温下工作,

并且

如果我们能够理解这种超导体中的原子是如何

表现

的,那么这可能是可能的 最好的

计算机没有能力

理解这

一点 量子计算机可能会改变

量子计算机是

一种使用量子

物理学

的全新

计算机 我们可能会

了解超导体中的原子是如何

表现的,这可以

让我们深入了解创造一种

可以在室温和压力下工作的超导体,

因此量子计算可以

我第一次看到这个

超导体实验时解锁这种超导体技术的惊人应用 2009

年,我 13 岁时,我的学校被

邀请参加在英国阅读的当地微软办公室举行的技术活动。

我记得走进一个房间,

展示了各种疯狂的实验 事件

发生了爆炸 液氮

超导体 这是令人难以置信

的 我记得那个穿绿衬衫的演讲者克里斯毕晓普

描述量子物理学,我清楚地

记得他的描述,它似乎

脱离了这个世界,但它描述了

这个世界是如何运作的

,这是促使我在大学学习

物理和计算机科学的火花

我在那里创办了哈佛大学和

斯坦福量子计算协会,

现在我在牛津大学攻读物理学博士学位,

专攻

量子

计算,从

拍摄这张照片到现在,我见证了量子计算的

惊人演变 量子计算

,这就是为什么我相信量子

计算可以改变我们的

世界是因为我们发现了量子计算的潜力,

因为我们发现

了量子计算的力量,

因为我们已经

取得了

重大成就的

进展

让我们了解这三个

要素如何导致量子计算

改变我们的

世界 首先

,我们可以用一台普通计算机做不到的量子计算机

来说明这样一个例子

我有这个袋子我要放

四个球

,其中三个是白色的,

二三

,其中一个

是 蓝色

然后我要关闭它 摇晃它

摇晃它以便它是随机

的 然后假设我正在寻找

蓝色的球

我可以打开它

挑选一个球

并检查它是否是蓝色

的然后我会 继续,

直到我找到蓝球

这就是你的普通计算机如何解决

这个问题

如果我们有四个球,

最多需要四次尝试,因为你可能

会在最后一次尝试时得到蓝球,

但如果这是一台量子计算机呢?

如果我用量子计算机将所有四个球都放在这个

袋子里

,你可以

在每次第一次尝试时得到蓝色球,

这样量子计算机可以将

这个过程从四次尝试加速到一次尝试

,一般来说,量子计算可以

加快搜索速度 当没有

str时 ucture 这个例子被称为

格罗弗的搜索

,还有其他过程

可以加速量子计算,当

我的意思是加速时,我的意思是加速

,例如,某些过程

可能需要数十亿年才能

在我们的普通计算机上解决,因为

你有 搜索如此多的

可能性,量子计算机可以在

几秒钟内完成

,这就是为什么现在几乎不可能解决的令人兴奋的事情

可以用

量子计算机来实现

,这可以改变行业

,例如你想要的医学 找到

一种新药

,这个过程可能需要一些时间,因为

你必须搜索很多

不同的可能性,量子

计算机可以加快这一速度,使我们

能够找到可以治愈

某些疾病的新药,

或者我们都熟悉的疫苗怎么样

随着开发疫苗所需的时间框架,

而量子计算机

可能会帮助我们更快地找到疫苗

或 在材料科学方面,你

想创造新材料,

使你使用的手机和笔记本电脑

更轻、更坚固,而量子

计算机可以做到这一点

,以及人工智能,

我们现在在人工智能方面取得了更大的进步,

因为更强大

我们今天拥有的计算机与多年前相比,

量子计算机

可以推动

人工智能发展 世界

那么我们怎么能做好这一切,这

因为我们现在发现了量子计算

的力量为了理解

这种力量,我们必须了解

一些关于我们的普通计算机是如何

工作的假设你是

给你的朋友发一封电子邮件嘿

笑脸你的电脑在做什么当

你做得很好你可能会说英语

但你的电脑 ter 说二进制语言,

英文字母是 a 到 z,

但二进制字母只有 0 和 1。

因此,您键入的任何内容都会被翻译成

零和一的序列,

例如,这个 h 被翻译成

这些零和一的序列

和 您可以为他们的笑脸执行此操作,

并且您的计算机会为

您在其上执行的所有操作执行此操作,它总是

将其转换为零和一个

现在以说明这一点,这被称为

我有这个甜甜圈的位

假设飞机侧

等于零 磨砂面

相当于一个,

这被称为经典位它

被称为经典位,因为它

用于我们的经典计算机,而

经典计算机基本上就是您的

普通计算机

现在量子计算机怎么样,

量子计算机也有一些位

但是

它们是不同的,

我们创造性地称它们为

量子比特,也称为

量子比特

,一个量子比特可以是零,也可以是

一,但它可以访问特殊的东西

它可以访问量子物理 ics 这

意味着它可以以量子方式运行

,例如它可以是

零和一

的组合

你需要多少经典比特

来表示这个

数字,这个数字

是 10 的 90 次方。

这个数字太大了,比

可观测宇宙中的原子数还多,

所以你可以看到叠加和

其他量子效应

使我们的量子计算机 强大的所以

我们如何将我们的量子位

叠加

我们使用称为量子门的东西

量子门改变我们的量子位的

行为

例如我们有这个哈达玛门

所以这个哈达玛门把我们的位设为

我们把它通过门现在它

结束了 在叠加中

记得我用四个球展示了这个例子,

你如何

一次尝试找到蓝色球

量子计算机可以d的原因 o 这是

因为你把所有的球

叠加在一起,你这样做的方式是

通过 hadamard 门假设

你正在烤蛋糕你可能会使用一个

食谱食谱告诉你

如何使用你必须的工具的说明

改变成分,这样你

最终就能把蛋糕

做好 量子算法是

我们给量子计算机的一组指令,

所以量子算法就像

食谱

我们使用的工具

就像量子门和

量子比特 就像成分一样,

所以量子算法会告诉您如何

应用量子门,以便您更改

量子位,从而获得所需的

解决方案

因此我们在量子计算方面取得了多大进展

我已经谈到了所有令人惊叹的

应用程序 力量,但

我们实际上取得了多少

进展 我们已经取得了重大

成就,我们迎来了

过去只有科学家才能使用的计算机,

但在 1970 年发生了重大转变

s 那时

,每个人都可以

在家中使用

计算机

好吧,人们认为量子计算机

不存在,或者只有科学家才能使用它们

没有

这种转变发生

在 2016 年,量子计算机

可供所有人使用,您

甚至不需要购买一台,您可以

免费使用它 现在通过互联网,

这些量子计算机是有限的

,你

可以用它们做的事情数量有限,它们不是很

强大,但随着人们玩

它们可以帮助该领域的进步,

所以让我们先看看你是如何

使用它们的 量子计算机 你可以使用

ibm 量子体验 当你去

这个平台你看到有

这些不同的线这些对应

于每个

qubit 现在你也可以 看到量子

门,所以这些是

我们可以应用于量子位以

获得所需

解决方案的不同工具,例如,如果我想将我的量子位置

于叠加状态,我可以将这个

哈达玛门拖到

对应于第一个量子位的第一行 然后

我可以点击

运行它可以在真正的量子计算机上运行

现在这是一个简单的例子

但是你可以用量子计算机做更复杂的事情

例如你可以下量子国际象棋

你可以做机器学习你可以

找到 巴士的最佳路径,

这是可能的原因之一是

因为我们

现在在硬件

方面取得了进展,为了了解硬件方面的进展,

我将访问牛津大学的泄漏实验室

他们正在

通过他们的衍生公司

牛津量子电路构建用于商业量子计算的量子计算机,他们

很高兴让我看看他们的实验室,

是泄漏实验室,现在你可以

听到一些背景噪音,这

是冰箱

冷却量子计算机的噪音在

本次演讲开始时,我展示了

需要浸入

液氮中的超导体,以便冷却,以便

它可以正常工作。 在这里,

因为他们在这里

为他们的量子计算机使用超导体,

所以他们需要冷却

它们以便它们

在我手中工作我拿着四个

由超导体制成的真正的量子比特,

你甚至可以用肉眼看到这些肘

如果你看得足够近,

这个实际上是一个甜甜圈的形状,

但并不是所有的肘部都是这样制作的,

所以它们看起来并不都是这样,

所以当我在 ibm 量子体验上运行某些东西时,这些量子比特被放置在

这个冰箱的底部

或使用任何量子计算机

我发送的指令量子

门通过互联网发送

到与此类似的量子计算机

,然后

指令一直发送

到此 冰箱,

他们将门应用于量子比特

,然后我们得到令人难以置信的结果,

大约五年前,我们在硬件方面取得了如此大的进步,我们

只有五个量子比特,但现在我们有大约

53 个量子比特,甚至更多,还有 53 个量子比特 让

我们在 2019 年实现了该领域的一个重要里程碑

这是第一次真正的

量子计算机可以超越

世界上最好的超级计算机

谷歌构建了一个问题然后

他们在他们的量子设备上运行

它大约需要 200 秒

然后他们估计

世界上最好的超级计算机

10 000 年需要多长时间?

对于现实世界的应用

,这被称为量子优势

量子优势可以改变这个

世界

,如果你在工业界,你可以成为其中的一部分

如果您对能量

和量子计算的工作原理感兴趣,您可以与量子计算公司合作,在您的行业中寻找潜在的应用程序,您可以

在真正的量子计算机上的应用程序上实际运行您的算法

,如果您从事量子计算

行业,您可以 教育未来的

劳动力,这将

有助于这一领域的进步,

因为人们解锁新的应用程序

玩量子计算机并建立

量子生态系统

量子计算变得更有可能

发挥其潜力

,超越它只是

时间问题 直到它颠覆我们的世界

谢谢